0000000000041217
AUTHOR
Martins Kalnins
Thermal Analysis, Mechanical and Rheological Behaviour of Melt Manufactured Polyethylene/Liquid Crystal Polymer Blends
Modification of properties of conventional thermoplastics with thermotropic liquid crystal polymers, from one hand, allows decrease their viscosities, substantially facilitating processing conditions, and, from another hand, allows increase their exploitation properties. Orientation of the labile structure of liquid crystal polymer in extrusion or injection moulding causes specific reinforcement (so-called self-reinforcement) to occur in the blends containing liquid crystal polymer. Up to now the effect of self-reinforcement is mostly investigated in the blends, containing considerable amount of liquid crystal polymer. In this research the effect of minor amounts of liquid crystalline co-po…
Mechanical properties of injection-molded binary blends of polyethylene with small additions of a liquid-crystalline polymer
The results of the investigation of the mechanical properties of polyethylene (PE) blends with small (<3 wt %) additions of thermotropic liquid-crystalline polymers (LCPs) are reported. PE/LCP compositions with various LCP weight contents were obtained by thermoplastic mixing in a two-stage process. Short-term and long-term mechanical behavior of various PE/LCP compositions were analyzed. Data on the influence of LCP addition on the tensile elastic modulus [or Young's modulus (E)], stress at yield (σY), stress at break (σB), strain at yield, strain at break, and deformation at long-term (1000-h) tensile creep were obtained. The experimental results of the investigation show that even small …
Research of the physical-chemical properties of adhesive radiation-modified thermosetting materials based on polyolefins and their composites
The present paper surveys the investigation results of the adhesive behavior with steel of different polyethylenes (LDPE, HDPE) irradiated with γ-radiation in vacuum, oxygen, and air, using rheological, optical, thermomechanical and other methods. To study the adhesive contact, the technological parameters applicable to thermosetting polymer material were taken into consideration. The results show the suitable methods in order to obtain thermosetting polymer materials with improved adhesive and thermomechanical properties.
Thermomechanical Properties of Radiation-Modified Polyethylene/Ethylene-Propylene-Diene Copolymer/Liquid-Crystalline Copolyester Blends
Radiation-modified blends of high-density polyethylene (PE) with ethylene-propylene-diene copolymer (EPDM; 10-65 wt.%) and thermotropic liquid-crystalline polymer (LCP; 10 wt.%) were investigated. The LCP was a liquid-crystalline copolyester of 40% poly(ethylene terephthalate) with 60% 4-hydroxybenzoic acid. The constituents were blended using a circular extruder, the specimens were prepared by compression molding and irradiated by 60Co γ-radiation up to 200 kGy. Mechanical, thermal, and morphological properties in wide temperature range were investigated for the irradiated and non-irradiated specimens. The effects of irradiation on the thermomechanical behaviour of the PE matrix are discus…
Elasticity and long-term behavior of recycled polyethylene terephthalate (rPET)/montmorillonite (MMT) composites
Abstract Recycled polyethylene terephthalate (rPET) nanocomposites with various amounts of montmorillonite clay (MMT) have been manufactured by using twin screw extrusion. By rising MMT weight content Wf up to 1 wt.% it is possible to increase yield strength and ultimate strength of the composite by 17% and 27% respectively in comparison to neat rPET. Introduction of MMT in the rPET leads also to considerable increase of the modulus of elasticity E. Relationship E(Wf), however, is non-linear and is characterized by slow-down in E growth along with increasing MMT content. At low nanofiller content experimental results are sufficiently well described by using the method of Mori–Tanaka and the…
Preparation and mechanical properties of intercalated PP/OMMT nanocomposites
The preparation of polymer nanocomposites by melt compounding polypropylene (PP) with organically modified montmorillonite using maleic anhydride modified PP as compatibilizer is described. Compositions with organomontmorillonite content 0, 5, 10 wt.% were prepared and tested. Data on the influence of organomontmorillonite content on the tensile stress?strain curves, elastic modulus, strength, and ultimate elongation of the nanocomposites are obtained. The concentration dependences of elastic properties of materials with differently oriented plate like nanoparticles analyses taking into account hierarchical structure features of nanocomposites is considered. Theoretical analysis results are…
Modeling and stress-strain characteristics of the mechanical properties of carbon-nanotube-reinforced poly(vinyl acetate) nanocomposites
Polymer/carbon nanotube (CNT) composites are one of the most perspective advanced materials developed in recent years. The properties of CNT-reinforced polymer composites, however, strongly depend on structural aspects of the nanostructured filler and on its dispersion quality in a polymer matrix. Consequently, this research was devoted to the investigation of multiwalled-CNT-modified poly(vinyl acetate) (PVAc) composites with respect to the mechanical property dependence on some structural characteristics of CNTs. PVAc/CNT nanocomposites were obtained with a solution casting technique. The amount of CNTs was changed from 0.01 up to 2 wt %. The stress–strain characteristics of PVAc/CNT nano…
Properties of radiation-modified blends of polyethylene with elastomers and liquid crystalline copolyester
The results are given on the effect of γ-irradiation on properties of blends of high and low-density polyethylene (HDPE, LDPE) with elastomers -ethylene/propylene/diene rubber (EPDM) and chlorinated polyethylene (CPE), and thermotropic liquid crystalline polymer (LCP). The morphological, thermal, mechanical properties (including thermosetting properties) and adhesion properties of blended composites were investigated. A special attention was paid to the applicability of the blends as thermosetting materials (TSM). The LCP used was a copolyester of poly(ethylene terephthalate) with p-(hydroxybenzoic acid) in the ratio 40: 60. It was found that addition of LCP essentially influenced the therm…
Structure and Mechanical Properties of Melt Intercalated Po1lypropylene–Organomontmorillonite Nanocomposites
The preparation and properties of polymer nanocomposites, obtained by melt-compounding of polypropylene (PP) and organomontmorillonite (OMMT) modified by different alkyl ammonium salts, are described. A copolymer of maleic anhydride and PP was used as a compatibilizing additive. Nanocomposites with OMMT content of 1, 5 and 10 wt% were prepared and tested. The influence of OMMT content on the tensile stress–strain curves, elastic modulus, yield and tensile strength, and ultimate elongation of the nanocomposites is determined. The results of measuring the microhardness and impact strength of polymer nanocomposites are presented. Long-term creep tests were performed to predict the long-term de…
Practical aspects in the relocation of Hermit beetle Osmoderma barnabita miropopulations in Latvia
Hermit beetle Osmoderma barnabita is a species of beetle protected in Latvia and Europe. In accordance with the data of the report to the European Commission on the situation of habitat and species protection in Latvia for 2007–2012 (Article 17 report), the population size of the Hermit beetle Osmoderma barnabita protected both in Latvia and Europe is estimated at 350–1000 localities. Specially Protected Nature Territories (hereinafter – SPNT) with Natura 2000 site status contain 71 (41 %) of population, while 103 (59 %) of population are situated outside these sites. A considerable portion of Latvia’s population inhabits parks, avenues and other plantations of residential areas, where the …