0000000000041236

AUTHOR

Giovanni Chiodini

Active Degassing of Deeply Sourced Fluids in Central Europe: New Evidences From a Geochemical Study in Serbia

We report on the results of an extensive geochemical survey of fluids released in the Vardar zone (central-western Serbia), a mega-suture zone at the boundary between Eurasia and Africa plates. Thirty-one bubbling gas samples are investigated for their chemical and isotopic compositions (He, C, Ar) and cluster into three distinct groups (CO2-dominated, N2-dominated, and CH4-dominated) based on the dominant gas species. The measured He isotope ratios range from 0.08 to 1.19 Ra (where Ra is the atmospheric ratio), and reveal for the first time the presence of a minor (<20%) but detectable regional mantle-derived component in Serbia. δ13C values range from −20.2‰ to −0.1‰ (versus PDB), with…

research product

Geogenic and atmospheric sources for volatile organic compounds in fumarolic emissions from Mt. Etna and Vulcano Island (Sicily, Italy)

[1] In this paper, fluid source(s) and processes controlling the chemical composition of volatile organic compounds (VOCs) in gas discharges from Mt. Etna and Vulcano Island (Sicily, Italy) were investigated. The main composition of the Etnean and Volcano gas emissions is produced by mixing, to various degrees, of magmatic and hydrothermal components. VOCs are dominated by alkanes, alkenes and aromatics, with minor, though significant, concentrations of O-, S- and Cl(F)-substituted compounds. The main mechanism for the production of alkanes is likely related to pyrolysis of organic-matter-bearing sediments that interact with the ascending magmatic fluids. Alkanes are then converted to alken…

research product

Mafic magma feeds degassing unrest at Vulcano Island, Italy

AbstractThe benign fuming activity of dormant volcanoes is punctuated by phases of escalating degassing activity that, on some occasions, ultimately prelude to eruption. However, understanding the drivers of such unrest is complicated by complex interplay between magmatic and hydrothermal processes. Some of the most comprehensively characterised degassing unrest have recently been observed at La Fossa cone on Vulcano Island, but whether or not these episodes involve new, volatile-rich ascending magma remains debated. Here, we use volcanic gas measurements, in combination with melt inclusion information, to propose that heightened sulphur dioxide flux during the intense fall 2021 La Fossa un…

research product

A New Web-Based Catalog of Earth Degassing Sites in Italy

Italy is a region characterized by intense and widespread processes of Earth degassing. High-temperature gases are released by crater plumes and fumaroles in volcanic environments throughout Italy. Also prevalent are numerous low-temperature gas emissions rich in carbon dioxide (CO2). These low-temperature emissions are located in a large area, mainly in the western sector of central and southern Italy (Figure 1).

research product

The emissions of CO2 and other volatiles from the world’s subaerial volcanoes

AbstractVolcanoes are the main pathway to the surface for volatiles that are stored within the Earth. Carbon dioxide (CO2) is of particular interest because of its potential for climate forcing. Understanding the balance of CO2 that is transferred from the Earth’s surface to the Earth’s interior, hinges on accurate quantification of the long-term emissions of volcanic CO2 to the atmosphere. Here we present an updated evaluation of the world’s volcanic CO2 emissions that takes advantage of recent improvements in satellite-based monitoring of sulfur dioxide, the establishment of ground-based networks for semi-continuous CO2-SO2 gas sensing and a new approach to estimate key volcanic gas param…

research product

. New ground-based lidar enables volcanic CO2 flux measurements

AbstractThere have been substantial advances in the ability to monitor the activity of hazardous volcanoes in recent decades. However, obtaining early warning of eruptions remains challenging, because the patterns and consequences of volcanic unrests are both complex and nonlinear. Measuring volcanic gases has long been a key aspect of volcano monitoring since these mobile fluids should reach the surface long before the magma. There has been considerable progress in methods for remote and in-situ gas sensing, but measuring the flux of volcanic CO2—the most reliable gas precursor to an eruption—has remained a challenge. Here we report on the first direct quantitative measurements of the volc…

research product

Hydrothermal pressure-temperature control on CO2 emissions and seismicity at Campi Flegrei (Italy)

Fluids supplied by stored magma at depth are causal factors of volcanic unrest, as they can cause pressurization/heating of hydrothermal systems. However, evidence for links between hydrothermal pressurization, CO2 emission and volcano seismicity have remained elusive. Here, we use recent (2010−2020) observations at Campi Flegrei caldera (CFc) to show hydrothermal pressure, gas emission and seismicity at CFc share common source areas and well-matching temporal evolutions. We interpret the recent escalation in seismicity and surface gas emissions as caused by pressure-temperature increase at the top of a vertically elongated (0.3–2 km deep) gas front. Using mass (steam) balance consideration…

research product

First observations of the fumarolic gas output from a restless caldera: Implications for the current period of unrest (2005-2013) at Campi Flegrei

[1] The fumarolic gas output has not been quantified for any of the currently deforming calderas worldwide, due to the lack of suitable gas flux sensing techniques. In view of resumption of ground uplift (since 2005) and the associated variations in gas chemistry, Campi Flegrei, in southern Italy, is one of the restless calderas where gas flux observations are especially necessary. Here we report the first ever obtained estimate of the Campi Flegrei fumarolic gas output, based on a set of MultiGAS surveys (performed in 2012 and 2013) with an ad-hoc-designed measurement setup. We estimate that the current Campi Flegrei fumarolic sulphur (S) flux is low, on the order of 1.5–2.2 tons/day, sugg…

research product

Hydrothermal fluid venting in the offshore sector of Campi Flegrei caldera: A geochemical, geophysical, and volcanological study

The ongoing unrest at the Campi Flegrei caldera (CFc) in southern Italy is prompting exploration of its poorly studied offshore sector. We report on a multidisciplinary investigation of the Secca delle Fumose (SdF), a submarine relief known since antiquity as the largest degassing structure of the offshore sector of CFc. We combined high-resolution morpho-bathymetric and seismo-stratigraphic data with onshore geological information to propose that the present-day SdF morphology and structure developed during the initial stages of the last CFc eruption at Monte Nuovo in AD 1538. We suggest that the SdF relief stands on the eastern uplifted border of a N-S-trending graben-like structure forme…

research product

Geosphere-biosphere interactions in bio-activity volcanic lakes: Evidences from Hule and Rìo Cuarto (Costa Rica)

Hule and R ́ıo Cuarto are maar lakes located 11 and 18 km N of Poa ́s volcano along a 27 km long fracture zone, in the Central Volcanic Range of Costa Rica. Both lakes are characterized by a stable thermic and chemical stratification and recently they were affected by fish killing events likely related to the uprising of deep anoxic waters to the surface caused by rollover phenomena. The vertical profiles of temperature, pH, redox potential, chemical and isotopic compositions of water and dissolved gases, as well as prokaryotic diversity estimated by DNA fingerprinting and massive 16S rRNA pyrosequencing along the water column of the two lakes, have highlighted that different bio-geochemica…

research product

Geogenic carbon transport through karst hydrosystems of Greece

The Earth C-cycle is complex, where endogenic and exogenic sources are interconnected, operating in a multiple spatial and temporal scale (Lee et al., 2019). Non-volcanic CO2 degassing from active tectonic structures is one of the less defined components of this cycle (Frondini et al, 2019). Carbon mass-balance (Chiodini et al., 2000) is a useful tool to quantify the geogenic carbon output from regional karst hydrosystems. This approach has been demonstrated for central Italy and may be valid also for Greece, due to the similar geodynamic settings. Deep degassing in Greece has been ascertained mainly at hydrothermal and volcanic areas, but the impact of geogenic CO2 released by active tecto…

research product

Fumarolic tremor and geochemical signals during a volcanic unrest

Fumaroles are known to generate seismic and infrasonic tremor, but this fumarolic tremor has so far received little attention. Seismic records taken near the Pisciarelli fumarole, a vigorously degassing vent of the restless Campi Flegrei volcano in Italy, reveal a fumarolesourced tremor whose amplitude has recently intensified. We use independent geochemical evidence to interpret this fumarolic tremor for the first time quantitatively. We find that the temporal increase in fumarolic tremor RSAM (real-time seismic-amplitude measurement) quantitatively correlates with increases in independent proxies of fumarole activity, including the CO2concentrations in the fumarole's atmospheric plume, th…

research product

Escalating CO2 degassing at the Pisciarelli fumarolic system, and implications for the ongoing Campi Flegrei unrest

Abstract This short communication aims at providing an updated report on degassing activity and ground deformation variations observed during the ongoing (2012–2019) Campi Flegrei caldera unrest, with a particular focus on Pisciarelli, currently its most active fumarolic field. We show that the CO2 flux from the main Pisciarelli fumarolic vent (referred as “Soffione”) has increased by a factor > 3 since 2012, reaching in 2018–2019 levels (>600 tons/day) that are comparable to those typical of a medium-sized erupting arc volcano. A substantial widening of the degassing vents and bubbling pools, and a further increase in CO2 concentrations in ambient air (up to 6000 ppm), have also been detec…

research product

First observations of the fumarolic gas output from a restless caldera: Implications for the current period of unrest (2005-2013) at Campi Flegrei

The fumarolic gas output has not been quantified for any of the currently deforming calderas worldwide, due to the lack of suitable gas flux sensing techniques. In view of resumption of ground uplift (since 2005) and the associated variations in gas chemistry, Campi Flegrei, in southern Italy, is one of the restless calderas where gas flux observations are especially necessary. Here we report the first ever obtained estimate of the Campi Flegrei fumarolic gas output, based on a set of MultiGAS surveys (performed in 2012 and 2013) with an ad-hoc-designed measurement setup. We estimate that the current Campi Flegrei fumarolic sulphur (S) flux is low, on the order of 1.5–2.2 tons/day, suggesti…

research product

Magmas near the critical degassing pressure drive volcanic unrest towards a critical state

During the reawaking of a volcano, magmas migrating through the shallow crust have to pass through hydrothermal fluids and rocks. The resulting magma–hydrothermal interactions are still poorly understood, which impairs the ability to interpret volcano monitoring signals and perform hazard assessments. Here we use the results of physical and volatile saturation models to demonstrate that magmatic volatiles released by decompressing magmas at a critical degassing pressure (CDP) can drive volcanic unrest towards a critical state. We show that, at the CDP, the abrupt and voluminous release of H2O-rich magmatic gases can heat hydrothermal fluids and rocks, triggering an accelerating deformation …

research product

The geological CO2degassing history of a long-lived caldera

The majority of the ~100 Holocene calderas on Earth host vigorously active hydrothermal systems, the heat and volatile budgets of which are sustained by degassing of deeply stored magma. Calderas may thus contribute a nontrivial, although poorly quantified, fraction of the global budget of magmatic volatiles such as CO2. Here we use original isotopic a d petrological results from Campi Flegrei volcano, Italy, to propose that hydrothermal calcites are natural mineral archives for the magmatic CO2 that reacted with reservoir rocks during the geological history of a caldera. We show that Campi Flegrei calcites, identified in core samples extracted from 3-km-deep geothermal wells, formed at iso…

research product

Volcanic CO2 flux measurement at Campi Flegrei by tunable diode laser absorption spectroscopy

Near-infrared room-temperature Tunable Diode Lasers (TDL) have recently found increased usage in atmospheric chemistry and air monitoring research, but applications in volcanology are still limited to a few examples. Here, we explored the potential of a commercial infrared laser unit (GasFinder 2.0 from Boreal Laser Ltd) for measurement of volcanic CO2 mixing ratios, and ultimately for estimating the volcanic CO2 flux. Our field tests were conducted at Campi Flegrei near Pozzuoli, Southern Italy, where the GasFinder was used during three campaigns in October 2012, January 2013 and May 2013 to repeatedly measure the path-integrated mixing ratios of CO2 along cross-sections of the atmospheric…

research product

Active degassing of crustal CO2 in areas of tectonic collision: A case study from the Pollino and Calabria sectors (Southern Italy)

Carbon dioxide (CO2) is released from the Earth’s interior into the atmosphere through both volcanic and non-volcanic sources in a variety of tectonic settings. A quantitative understanding of CO2 outgassing fluxes in different geological settings is thus critical for decoding the link between the global carbon budget and different natural processes (e.g., volcanic eruption and earthquake nucleation) and the effects on the climate evolution over geological time. It has recently been proposed that CO2 degassing from non-volcanic areas is a major component of the natural CO2 emission budget, but available data are still sparse and incomplete. Here, we report the results of a geochemical surve…

research product

Hydrothermal fluid flow structures at Solfatara volcano, Somma-Vesuvius volcanic complex and Mt. Etna

Solfatara (Campi Flegrei):We present the first detailed 3-D Resistivity model of the Solfatara-Pisciarelli area, obtained from numerousERT surveys during the “MED-SUV” Project. This inversion was performed by taking into account 44 000ERT data points, as well as surface e-m resistivity measurements and the magneto-tellurics model from A.Siniscalchi et al. respectively as surface and bottom boundary conditions. The 3-D resistivity structure wellmatches with the CO2 flux, temperature and self-potential variations at the crater surface. This model clearlyhighlights the main geological units of the area (Monte Olibano, Solfatara crypto-dome, layers of eruptivedeposits), and the structures of hy…

research product

Geochemistry of gases and waters discharged by the mud volcanoes at Paternò, Mt. Etna (Italy)

Approximately 20 km south of Mt. Etna craters, at the contact between volcanic and sedimentary formations, three mud volcanoes discharge CO2-rich gases and Na–Cl brines. The compositions of gas and liquid phases indicate that they are fed by a hydrothermal system for which temperatures of 100–150 °C were estimated by means of both gas and solute geothermometry. The hydrothermal system may be associated with CO2-rich groundwaters over a large area extending from the central part of Etna to the mud volcanoes. Numerous data on the He, CH4, CO2 composition of the gases of the three manifestations, sampled over the past 5 years, indicate clearly that variations are due to separation processes of…

research product

Carbon dioxide diffuse emission and thermal energy release from hydrothermal systems at Copahue-Caviahue Volcanic Complex (Argentina)

Fil: Chiodini, Giovanni. Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna. Bologna, Italia. Fil: Cardellini, Carlo. Università degli Studi di Perugia, Dipartimento di Fisica e Geologia. Perugia, Italy. Fil: Lamberti, María C. Universidad de Buenos Aires. Instituto de Estudios Andinos. Buenos Aires, Argentina. Fil: Agusto, Mariano. Universidad de Buenos Aires. Instituto de Estudios Andinos. Buenos Aires, Argentina. Fil: Caselli, Alberto Tomás Universidad Nacional de Río Negro. Instituto de Investigación en Paleobiología y Geología. Río Negro. Argentina. Fil: Liccioli, Caterina. Universidad de Buenos Aires. Instituto de Estudios Andinos. Buenos Aires, Argentina. Fil: Tambure…

research product

First combined flux chamber survey of mercury and CO2 emissions from soil diffuse degassing at Solfatara of Pozzuoli crater, Campi Flegrei (Italy): Mapping and quantification of gas release

Abstract There have been limited studies to date targeting gaseous elemental mercury (GEM) flux from soil emission in enriched volcanic substrates and its relation with CO 2 release and tectonic structures. In order to evaluate and understand the processes of soil–air exchanges involved at Solfatara of Pozzuoli volcano, the most active zone of Campi Flegrei caldera (Italy), an intensive field measurement survey has been achieved in September 2013 by using high-time resolution techniques. Soil–air exchange fluxes of GEM and CO 2 have been measured simultaneously at 116 points, widely distributed within the crater. Quantification of gas flux has been assessed by using field accumulation chamb…

research product

Carbon degassing through karst hydrosystems of Greece

Estimation of CO2 degassing from active tectonic structures and regional hydrothermal systems is essential for the quantification of presentday Earth degassing [Frondini et al., 2019 and references therein]. Due to the high solubility of CO2 in water, great amounts of deep inorganic carbon can be dissolved, transported, and released from regional aquifers. By applying a massbalance approach [Chiodini et al., 2000], different sources of the dissolved CO2 can be discriminated. The main source of degassing in Greece is concentrated in hydrothermal and volcanic areas. However, deep CO2 from active tectonic areas has not yet been quantified. A key point of this research is to investigate the pos…

research product

CO2 degassing at La Solfatara volcano (Phlegrean Fields): Processes affecting and of soil CO2

Abstract The soil CO2 degassing is affected by processes of isotope exchange and fractionation during transport across the soil, which can deeply modify the pristine isotope composition. This has been observed in the Solfatara volcano, upon a field survey of 110 points, where the CO2 flux was measured, together with temperature, CO2 concentration and oxygen and carbon isotopes within the soil. Furthermore, in some selected sites, the measurements were made at different depths, in order to analyze vertical gradients. Oxygen isotope composition appears controlled by exchange with soil water (either meteoric or fumarolic condensate), due to the fast kinetic of the isotopic equilibrium between …

research product

The hydrothermal system of the Domuyo volcanic complex (Argentina): A conceptual model based on new geochemical and isotopic evidences

The Domuyo volcanic complex (Neuquén Province, Argentina) hosts one of the most promising geothermal systems of Patagonia, giving rise to thermal manifestations discharging hot and Cl−-rich fluids. This study reports a complete geochemical dataset of gas and water samples collected in three years (2013, 2014 and 2015) from the main fluid discharges of this area. The chemical and isotopic composition (δD-H2O and δ18O-H2O) of waters indicates that rainwater and snow melting are the primary recharge of a hydrothermal reservoir located at relative shallow depth (400–600 m) possibly connected to a second deeper (2–3 km) reservoir. Reactive magmatic gases are completely scrubbed by the hydrotherm…

research product

Carbon dioxide degassing from Tuscany and Northern Latium (Italy)

Abstract The CO 2 degassing process from a large area on the Tyrrhenian side of central Italy, probably related to the input into the upper crust of mantle fluids, was investigated in detail through the geochemical study of gas emissions and groundwater. Mass-balance calculations and carbon isotopes show that over 50% of the inorganic carbon in regional groundwater is derived from a deep source highlighting gas−liquid separation processes at depth. The deep carbonate−evaporite regional aquifer acts as the main CO 2 reservoir and when total pressure of the reservoir fluid exceeds hydrostatic pressure, a free gas phase separates from the parent liquid and escapes toward the surface generating…

research product

Quantification of deep CO2 fluxes from Central Italy. Examples of carbon balance for regional aquifers and of soil diffuse degassing.

Abstract In Central Italy non-volcanic CO 2 is discharged by focused degassing (strong diffuse emission and vents) and by high-CO 2 groundwater. 3 He / 4 He data and the carbon isotopic composition of CO 2 are compatible with derivation from mantle degassing and/or metamorphic decarbonation. The gases produced at depth accumulate in permeable reservoirs composed of Mesozoic carbonates. When total pressure (roughly corresponding to p CO 2 ) of the reservoir fluid exceeds hydrostatic pressure, a free gas phase forms gas reservoirs within the permeable host rocks from which gases may escape toward the surface. This process generates both the focused vents and the CO 2 -rich springs which chara…

research product

Mineral control of arsenic content in thermal waters from volcano-hosted hydrothermal systems: Insights from island of Ischia and Phlegrean Fields (Campanian Volcanic Province, Italy)

This paper documents arsenic concentrations in 157 groundwater samples from the island of Ischia and the Phlegrean Fields, two of the most active volcano-hosted hydrothermal systems from the Campanian Volcanic Province (Southern Italy), in an attempt to identify the environmental conditions and mineral-solution reactions governing arsenic aqueous cycling. On Ischia and in the Phlegrean Fields, groundwaters range in composition from NaCl brines, which we interpret as the surface discharge of deep reservoir fluids, to shallow-depth circulating fluids, the latter ranging from acid-sulphate steam-heated to hypothermal, cold, bicarbonate groundwaters. Arsenic concentrations range from 1.6 to 690…

research product

First 13C/12C isotopic characterisation of volcanic plume CO2

We describe analytical details and uncertainty evaluation of a simple technique for the measurement of the carbon isotopic composition of CO2 in volcanic plumes. Data collected at Solfatara and Vulcano, where plumes are fed by fumaroles which are accessible for direct sampling, were first used to validate the technique. For both volcanoes, the plume-derived carbon isotopic compositions are in good agreement with the fumarolic compositions, thus providing confidence on the method, and allowing its application at volcanoes where the volcanic component is inaccessible to direct sampling. As a notable example, we applied the same method to Mount Etna where we derived a δ13C of volcanic CO2 betw…

research product

New insights into the magmatic-hydrothermal system and volatile budget of Lastarria volcano, Chile: Integrated results from the 2014 IAVCEI CCVG 12th Volcanic Gas Workshop

Recent geophysical evidence for large-scale regional crustal inflation and localized crustal magma intrusion has made Lastarria volcano (northern Chile) the target of numerous geological, geophysical, and geochemical studies. The chemical composition of volcanic gases sampled during discrete campaigns from Lastarria volcano indicated a well-developed hydrothermal system from direct fumarole samples in A.D. 2006, 2008, and 2009, and shallow magma degassing using measurements from in situ plume sampling techniques in 2012. It is unclear if the differences in measured gas compositions and resulting interpretations were due to artifacts of the different sampling methods employed, short-term exc…

research product

Evidence of a recent input of magmatic gases into the quiescent volcanic edifice of Panarea, Aeolian Islands, Italy

- Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuviano, Naples, Italy. - Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Palermo, Palermo, Italy. - Dipartimento Chimica e Fisica della Terra ed Applicazioni, Palermo, Italy.

research product

The Hydrothermal System of the Campi Flegrei Caldera, Italy

In this chapter, we review the state-of-the-art of the Campi Flegrei caldera (Naples) hydrothermal system, and its behaviour during the last decades. The Campi Flegrei caldera has been undergoing unrest since 1950, as evidenced by recurrent bradyseismic episodes accompanied by manifest changes in the degassing budget, degassing patterns and in the composition of the fumarolic fluids. In-depth analysis of geochemical and geophysical datasets acquired over decades has allowed identification of the mechanisms driving volcanic unrest at the Campi Flegrei caldera. We propose a conceptual model of the hydrothermal system feeding Solfatara fumaroles, where geochemical information is integrated wit…

research product