6533b831fe1ef96bd12998e5
RESEARCH PRODUCT
Volcanic CO2 flux measurement at Campi Flegrei by tunable diode laser absorption spectroscopy
Giovanni ChiodiniMaria PedoneF. GrassaCarlo CardelliniMariano ValenzaGaetano GiudiceAlessandro AiuppaAlessandro Aiuppasubject
geographygeography.geographical_feature_categoryTunable diode laser absorption spectroscopyVolcanic CO2 fluxesFar-infrared laserMineralogyVolcanologyLaser7. Clean energyFumaroleSettore GEO/08 - Geochimica E Vulcanologialaw.inventionTunable diode lasers Atmospheric CO2 monitoring Volcanic CO2 fluxes Campi FlegreiAtmosphereVolcanotunable diode lasers atmospheric CO2 monitoring volcanic gas sensing by laser spectroscopy volcanic CO2 fluxes Campi Flegrei13. Climate actionGeochemistry and PetrologylawAtmospheric chemistryAtmospheric CO2 monitoringTunable diode lasersCampi FlegreiGeologyRemote sensingdescription
Near-infrared room-temperature Tunable Diode Lasers (TDL) have recently found increased usage in atmospheric chemistry and air monitoring research, but applications in volcanology are still limited to a few examples. Here, we explored the potential of a commercial infrared laser unit (GasFinder 2.0 from Boreal Laser Ltd) for measurement of volcanic CO2 mixing ratios, and ultimately for estimating the volcanic CO2 flux. Our field tests were conducted at Campi Flegrei near Pozzuoli, Southern Italy, where the GasFinder was used during three campaigns in October 2012, January 2013 and May 2013 to repeatedly measure the path-integrated mixing ratios of CO2 along cross-sections of the atmospheric plumes of two major fumarolic fields (Solfatara and Pisciarelli). By using a tomographic post-processing routine, we resolved, for each of the two fields, the contour maps of CO2 mixing ratios in the atmosphere, from the integration of which (and after multiplication by the plumes’ transport speeds) the CO2 fluxes were finally obtained. We evaluate a total CO2 output from the Campi Flegrei fumaroles of 490 Mg/day, in line with independent estimates based on in-situ (Multi-GAS) observations. We conclude that TDL technique may enable CO2 flux quantification at other volcanoes worldwide.
year | journal | country | edition | language |
---|---|---|---|---|
2014-01-01 | Bulletin of Volcanology |