0000000000041391
AUTHOR
Ts. Miteva
Compatibilization of blends of polyethylene with a semirigid liquid crystalline polymer by PE-g-LCP copolymers
The blends of thermoplastics with liquid crystalline polymers show, in general, poor properties because of the lack of adherence between the two phases. The use of ad hoc synthesized copolymers containing the monomer units of the two polymers has been recently considered by some of us for blend compatibilization, and the results appear promising. In this work, new PE-g-LCP copolymers, prepared either by the synthesis of the LCP in the presence of a functionalized PE, or by reactive blending of the latter polymer with preformed LCP, have been employed as compatibilizing additives for blends of PE with a semirigid LCP. The morphology and the rheological and mechanical properties of the ternar…
Synthesis of PP-LCP graft copolymers and their compatibilizing activity for PP/LCP blends
The aim of this work was the synthesis of new graft copolymers consisting of polypropylene (PP) backbones and liquid crystalline polymer (LCP) branches, to be used as compatibilizing agents for PP/LCP blends. The PP-g-LCP copolymers have been prepared by polycondensation of the monomers of a semiflexible liquid crystalline polyester (SBH 1 : 1 : 2), that is, sebacic acid (S), 4,4′-dihydroxybiphenyl (B), and 4-hydroxybenzoic acid (H) in the mole ratio of 1 : 1 : 2, carried out in the presence of appropriate amounts of a commercial acrylic-acid-functionalized polypropylene (PPAA). The polycondensation products, referred to as COPP50 and COPP70, having a calculated PPAA concentration of 50 and…
Effect of the Components Molar Mass and of the Mixing Conditions on the Compatibilization of PE/LCP Blends by PE-g-LCP Copolymers
The rheology, morphology, and mechanical properties of blends of high-density polyethylene (HDPE) with a semiflexible liquid crystalline copolyester (SBH) were studied in order to assess the compatibilizing ability of added PE-g-SBH copolymers, and its dependence on the molar mass of the PE matrix, and on the technique used for blend preparation. The PE-g-SBH copolymers were synthesized as described in previous articles, either by the polycondensation of the SBH monomers in the presence of a functionalized PE sample containing free carboxyl groups, or by reactive blending of the latter polymer with preformed SBH. Two samples of HDPE having different molar masses, and two samples of SBH with…
Reactive blending of a functionalized polyethylene with a semiflexible liquid crystalline copolyester
Reactive blends (50/50 w/w) of a low molar mass polyethylene containing free carboxylic groups (PEox) and a semiflexible liquid crystalline polyester (SBH 1 : 1 : 2, by Eniricerche) have been prepared at 240 degrees C in a Brabender mixer, in the presence of Ti(OBu)(4) catalyst, for different mixing times (15, 60, and 120 min). In order to prove the formation of a PE-g-SBH copolymer, the blends have been fractionated by successive extractions with boiling toluene and xylene. The soluble fractions and the residues have been analyzed by Fourier transform infrared (FTIR) spectroscopy, thermogravimetry (TG and DTG), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM)…