0000000000041506

AUTHOR

Matthew Gormley

showing 2 related works from this author

Severe pre-eclampsia is associated with alterations in cytotrophoblasts of the smooth chorion.

2016

Pre-eclampsia (PE), which affects ∼8% of first pregnancies, is associated with faulty placentation. Extravillous cytotrophoblasts (CTBs) fail to differentiate properly, contributing to shallow uterine invasion and deficient spiral artery remodeling. We studied the effects of severe PE (sPE) on the smooth chorion portion of the fetal membranes. The results showed a significant expansion of the CTB layer. The cells displayed enhanced expression of stage-specific antigens that extravillous CTBs normally upregulate as they exit the placenta. Transcriptomics revealed the dysregulated expression of many genes (e.g. placental proteins, markers of oxidative stress). We confirmed an sPE-related incr…

0301 basic medicineAdultSpiral arteryTranscription GeneticPlacentaHuman DevelopmentCTBSExtraembryonic MembranesBiology210Andrology03 medical and health sciences0302 clinical medicineDownregulation and upregulationPre-EclampsiaPregnancyPlacentamedicineHumansPregnancy-Associated Plasma Protein-AMolecular BiologyCytotrophoblastPAPPA1Cell ProliferationFetus030219 obstetrics & reproductive medicineCytotrophoblastPlacentationGene Expression Regulation DevelopmentalPreterm birthChorionPlacentationTrophoblastsOxidative Stress030104 developmental biologymedicine.anatomical_structureImmunologyembryonic structuresKeratinsFemaleCytotrophoblastsTranscriptomeDevelopmental BiologyProtein BindingHumanDevelopment (Cambridge, England)
researchProduct

Human stem cells from single blastomeres reveal pathways of embryonic or trophoblast fate specification.

2015

Mechanisms of initial cell fate decisions differ among species. To gain insights into lineage allocation in humans, we derived ten human embryonic stem cell lines (designated UCSFB1-10) from single blastomeres of four 8-cell embryos and one 12-cell embryo from a single couple. Compared with numerous conventional lines from blastocysts, they had unique gene expression and DNA methylation patterns that were, in part, indicative of trophoblast competence. At a transcriptional level, UCSFB lines from different embryos were often more closely related than those from the same embryo. As predicted by the transcriptomic data, immunolocalization of EOMES, T brachyury, GDF15 and active β-catenin reve…

BlastomeresTranscription GeneticCellular differentiationMedical and Health SciencesEmbryo Culture TechniquesEpigenomeNeural Stem CellsDevelopmentalMyocytes Cardiacbeta CateninOligonucleotide Array Sequence AnalysisEndodermGene Expression Regulation DevelopmentalEmbryoCell DifferentiationBiological SciencesStem Cells and RegenerationTrophoblastsmedicine.anatomical_structureembryonic structuresStem Cell Research - Nonembryonic - Non-HumanStem cellEndodermCardiacTranscriptionBrachyuryGrowth Differentiation Factor 151.1 Normal biological development and functioningBiologyCell LineGeneticUnderpinning researchmedicineGeneticsHumansHuman embryoCell LineageBlastocystMolecular BiologyEmbryonic Stem CellsMyocytesBlastomereHuman embryonic stem cellGene Expression ProfilingTrophoblastFibroblastsDNA MethylationStem Cell ResearchHuman trophoblast stem cellEmbryonic stem cellMolecular biology102Fate specificationBlastocystGene Expression RegulationGeneric health relevanceTranscriptomeDevelopmental Biology
researchProduct