0000000000041569
AUTHOR
Z. M. Omarov
Heat capacity and thermal conductivity of multiferroics Bi1-xPrxFeO3
The heat capacity and thermal conductivity of multiferroics Bi1–xPrxFeO3 (0 ≤ x ≤ 0.50) has been studied in the temperature range of 130–800 K. A slight substitution of praseodymium for bismuth is found to lead to a noticeable shift of the antiferromagnetic phase transition temperature whilst the heat capacity increases. The temperature dependences of the heat capacity and thermal conductivity exhibit additional anomalies during phase transitions. The experimental results suggest that the excess heat capacity can be attributed to the Schottky effect for three-level states. The basic mechanisms of the heat transfer of phonons are highlighted and the dependence of the mean free path on temper…
Thermal properties of multiferroic Bi1−xEuxFeO3 (х = 0–0.40) ceramics
Abstract A study of thermal diffusion, heat capacity and thermal conductivity of multiferroic Bi 1−x Eu x FeO 3 (x = 0–0.4) within the range of 130–1200 K is reported. Modifying by admixture of Eu is found to change substantially the thermal anomalies of diffusion and thermal conductivity of the antiferromagnetic phase transition, to increase heat capacity over a wide range of temperatures and to shift the antiferromagnetic transition temperature. The excess heat capacity is shown being related to Schottky effect of three-level states. The mechanisms dominating thermal transfer of phonons at the phase transition and dependence of the mean free path of phonons on the temperature are determin…
Features of Thermal Properties of Ferroelectric PLZT Ceramics in the Region of Phase Transition
A study of specific heat and thermal expansion of PLZT-9/65/35 ceramics in the 150– 800 K range of temperatures is reported. Specific diffused features in behaviour of heat capacity and thermal expansion are revealed in the 250–650 K and 330–550 K range of temperature, respectively, and shown to be the result of the growth and changes of a system of ordering nano-size polarised regions. The features of heat capacity in the 250–650 K range of temperature are found to be related to two-level states (the Schottky anomaly). Obtained results are discussed together with data of structural and dielectric studies.
Thermal properties of ferroelectric 0.7PbNi1/3Nb2/3O3–0.3PbTiO3ceramics
A study of heat capacity as function of temperature of the 0.7PbNi1/3Nb2/3O3–0.3PbTiO3 solid solution within the 120–800 K range is reported. Broad anomalies on the curve of heat capacity are revealed in the 250–450 K and 450–650 K intervals peaking at 520 K and a λ-anomaly at T ≈ 225 K. Results are discussed with account for dielectric and structural data.