0000000000042484

AUTHOR

S T Fraser

showing 1 related works from this author

Mouse embryonic stem cells are hypersensitive to apoptosis triggered by the DNA damage O(6)-methylguanine due to high E2F1 regulated mismatch repair.

2007

Exposure of stem cells to genotoxins may lead to embryonic lethality or teratogenic effects. This can be prevented by efficient DNA repair or by eliminating genetically damaged cells. Using undifferentiated mouse embryonic stem (ES) cells as a pluripotent model system, we compared ES cells with differentiated cells, with regard to apoptosis induction by alkylating agents forming the highly mutagenic and killing DNA adduct O(6)-methylguanine. Upon treatment with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), ES cells undergo apoptosis at much higher frequency than differentiated cells, although they express a high level of the repair protein O(6)-methylguanine-DNA methyltransferase (MGMT). Apo…

Pluripotent Stem CellsMethylnitronitrosoguanidineDNA ComplementaryGuanineDNA damageDNA repairCellular differentiationApoptosisBiologyDNA Mismatch RepairModels BiologicalDNA AdductsMiceO(6)-Methylguanine-DNA MethyltransferaseDNA adductAnimalsMolecular BiologyEmbryonic Stem CellsSwiss 3T3 CellsBase SequenceCell DifferentiationCell BiologyDNA MethylationFibroblastsEmbryonic stem cellMolecular biologyDNA-Binding ProteinsMutS Homolog 2 ProteinDNA methylationDNA mismatch repairStem cellE2F1 Transcription FactorDNA DamageCell death and differentiation
researchProduct