0000000000042870

AUTHOR

Bérengère Abou

showing 2 related works from this author

Communication versus waterproofing: the physics of insect cuticular hydrocarbons

2019

Understanding the evolution of complex traits is among the major challenges in biology. One such trait is the cuticular hydrocarbon (CHC) layer in insects. It protects against desiccation and provides communication signals, especially in social insects. CHC composition is highly diverse within and across species. To understand the adaptive value of this chemical diversity, we must understand how it affects biological functionality. So far, CHCs received ample research attention, but their physical properties were little studied. We argue that these properties determine their biological functionality, and are vital to understand how CHC composition affects their adaptive value. We investigat…

0106 biological sciencesAdaptive valuePhysiologymedia_common.quotation_subjectInsectAquatic ScienceBiology010603 evolutionary biology01 natural sciences03 medical and health sciencesSpecies SpecificityFreezingAnimalsMolecular BiologymicrorheologyEcology Evolution Behavior and SystematicsComputingMilieux_MISCELLANEOUS030304 developmental biologymedia_commonPhysics0303 health sciencesCalorimetry Differential ScanningAntsViscosityHydrocarbonsAnimal CommunicationInsect ScienceChemical diversitycuticular hydrocarbonAnimal Science and ZoologyRheologyBiological system[PHYS.COND.CM-SCM]Physics [physics]/Condensed Matter [cond-mat]/Soft Condensed Matter [cond-mat.soft]
researchProduct

Coping with the climate: cuticular hydrocarbon acclimation of ants under constant and fluctuating conditions

2018

International audience; Terrestrial arthropods achieve waterproofing by a layer of cuticular hydrocarbons (CHCs). At the same time, CHCs also serve as communication signals. To maintain waterproofing under different climate conditions, insects adjust the chemical composition of their CHC layer, but this may affect the communication via CHCs. The detailed acclimatory changes of CHCs and how these influence their physical properties are still unknown. Here, we studied acclimation in two closely related ant species with distinct CHC profiles, Myrmica rubra and Myrmica ruginodis, in response to constant or fluctuating temperature and humidity regimes. We measured how acclimation affected CHC co…

0106 biological sciences0301 basic medicineHot TemperaturePhysiologyDesiccation resistanceAcclimatizationClimateClimate Change[PHYS.PHYS.PHYS-BIO-PH]Physics [physics]/Physics [physics]/Biological Physics [physics.bio-ph]Phenotypic plasticityAquatic ScienceMyrmica rubra010603 evolutionary biology01 natural sciencesAcclimatizationDrought survivalCHCs03 medical and health sciencesSpecies SpecificityAnimalsRelative humidityMyrmica ruginodisSolid contentMicrorheologyMolecular BiologyEcology Evolution Behavior and Systematicschemistry.chemical_classificationPhenotypic plasticitybiologyAntsEcologyViscosityHumidityHumidity15. Life on landbiology.organism_classificationHydrocarbons[SDV.BA.ZI]Life Sciences [q-bio]/Animal biology/Invertebrate Zoology030104 developmental biologyHydrocarbonchemistry13. Climate actionInsect ScienceAnimal Science and Zoology[SDV.EE.BIO]Life Sciences [q-bio]/Ecology environment/BioclimatologyRheology[PHYS.COND.CM-SCM]Physics [physics]/Condensed Matter [cond-mat]/Soft Condensed Matter [cond-mat.soft]
researchProduct