0000000000042930

AUTHOR

Pascual Oña‐burgos

0000-0002-2341-7867

showing 5 related works from this author

Bimetallic Intersection in PdFe@FeO x ‐C Nanomaterial for Enhanced Water Splitting Electrocatalysis

2022

Supported Fe-doped Pd-nanoparticles (NPs) are prepared via soft transformation of a PdFe-metal oraganic framework (MOF). The thus synthesized bimetallic PdFe-NPs are supported on FeO@C layers, which are essential for developing well-defined and distributed small NPs, 2.3 nm with 35% metal loading. They are used as bifunctional nanocatalysts for the electrocatalytic water splitting process. They display superior mass activity for the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER), both in alkaline and acid media, compared with those obtained for benchmarking platinum HER catalyst, and ruthenium, and iridium oxide OER catalysts. PdFe-NPs also exhibit outstanding sta…

Oxygen evolution reactionCatàlisiNanotecnologiaRenewable Energy Sustainability and the EnvironmentDesenvolupament sostenibleElectrocatalysisHydrogen evolution reactionNanocompositesGeneral Environmental ScienceAdvanced Sustainable Systems
researchProduct

Use of alkylarsonium directing agents for the synthesis and study of zeolites

2019

[EN] Expanding the previously known family of -onium (ammonium, phosphonium, and sulfonium) organic structure-directing agents (OSDAs) for the synthesis of zeolite MFI, a new member, the arsonium cation, is used for the first time. The new group of tetraalkylarsonium cations has allowed the synthesis of the zeolite ZSM-5 with several different chemical compositions, opening a route for the synthesis of zeolites with a new series of OSDA. Moreover, the use of As replacing N in the OSDA allows the introduction of probe atoms that facilitate the study of these molecules by powder X-ray diffraction (PXRD), solid-state nuclear magnetic resonance (MAS NMR), and X-ray absorption spectroscopy (XAS)…

X-ray absorption spectroscopyChemistrySulfoniumOrganic ChemistryGeneral ChemistryOniumAlkylarsoniumCatalysislaw.inventionArsenicchemistry.chemical_compoundCrystallographyCompostos orgànics SíntesiStructure-directing agentslawCationsQUIMICA ANALITICAZeolitesMoleculePhosphoniumCrystallizationZeoliteMaterialsPowder diffraction
researchProduct

Cobalt Metal-Organic Framework Based on Layered Double Nanosheets for Enhanced Electrocatalytic Water Oxidation in Neutral Media

2020

A new cobalt metal-organic framework (2D-Co-MOF) based on well-defined layered double cores that are strongly connected by intermolecular bonds has been developed. Its 3D structure is held together by π-π stacking interactions between the labile pyridine ligands of the nanosheets. In aqueous solution, the axial pyridine ligands are exchanged by water molecules, producing a delamination of the material, where the individual double nanosheets preserve their structure. The original 3D layered structure can be restored by a solvothermal process with pyridine, so that the material shows a "memory effect"during the delamination-pillarization process. Electrochemical activation of a 2D-Co-MOF@Nafi…

Aqueous solutionOxygen evolutionStackingIonic bondingchemistry.chemical_elementGeneral ChemistryCobaltQuímicaOverpotential010402 general chemistryElectrochemistry01 natural sciencesBiochemistryCatalysis0104 chemical scienceschemistry.chemical_compoundColloid and Surface ChemistryQUIMICA ORGANICAchemistryChemical engineeringPyridineQUIMICA ANALITICACobalt
researchProduct

MOF-Mediated Synthesis of Supported Fe-Doped Pd Nanoparticles under Mild Conditions for Magnetically Recoverable Catalysis**

2020

Metal–organic framework (MOF)-driven synthesis is considered as a promising alternative for the development of new catalytic materials with well-designed active sites. This synthetic approach is used here to gradually transform a new bimetallic MOF, with Pd and Fe as the metal components, by the in situ generation of aniline under mild conditions. This methodology results in a compositionally homogeneous nanocomposite formed by Fe-doped Pd nanoparticles that, in turn, are supported on iron oxide-doped carbon. The nanocomposite has been fully characterized by several techniques such as IR and Raman spectroscopy, TEM, XPS, and XAS. The performance of this nanocomposite as an heterogeneous cat…

Materials scienceIron09.- Desarrollar infraestructuras resilientes promover la industrialización inclusiva y sostenible y fomentar la innovaciónNanoparticle010402 general chemistryHeterogeneous catalysis01 natural sciences7. Clean energyCatalysisCatalysisNitrobenzenechemistry.chemical_compoundLight sourceAnilineCatàlisiQUIMICA ANALITICAmedia_common.cataloged_instanceUser FacilityEuropean unionBimetallic stripmedia_commonX-ray absorption spectroscopyNanocomposite010405 organic chemistryOrganic ChemistryGeneral ChemistryMetal-organic frameworks0104 chemical sciences12.- Garantizar las pautas de consumo y de producción sostenibleschemistryChemical engineeringFe dopedPd nanoparticlesNanoparticlesMaterials nanoestructuratsNational laboratoryHumanitiesPalladium
researchProduct

Cobalt Metal-Organic Framework based on two dinuclear secondary building units for electrocatalytic oxygen evolution

2019

[EN] The synthesis of a new microporous metal-organic framework (MOF) based on two secondary building units, with dinuclear cobalt centers, has been developed. The employment of a well-defined cobalt cluster results in an unusual topology of the Co-2-MOF, where one of the cobalt centers has three open coordination positions, which has no precedent in MOF materials based on cobalt. Adsorption isotherms have revealed that Co-2-MOF is in the range of best CO2 adsorbents among the carbon materials, with very high CO2/CH4 selectivity. On the other hand, dispersion of Co-2-MOF in an alcoholic solution of Nafion gives rise to a composite (Co-2-MOF@Nafion) with great resistance to hydrolysis in aqu…

Materials scienceCobalt clusterLibrary scienceOxygen evolution reaction and gas storage02 engineering and technologyCobalt010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesCobalt MOF0104 chemical sciencesQUIMICA ORGANICAQUIMICA ANALITICACobalt metalGeneral Materials Science0210 nano-technologyElectrocatalysisMaterials
researchProduct