0000000000042991

AUTHOR

Alexandre Viruela

Performance of a membrane-coupled high-rate algal pond for urban wastewater treatment at demonstration scale

[EN] The objective of this study was to evaluate the performance of an outdoor membrane-coupled high-rate algal pond equipped with industrial-scale membranes for treating urban wastewater. Decoupling biomass retention time (BRT) and hydraulic retention time (HRT) by membrane filtration resulted in improved process efficiencies, with higher biomass productivities and nutrient removal rates when operating at low HRTs. At 6 days of BRT, biomass productivity increased from 30 to 66 and to 95 g.m(-3).d(-1) when operating at HRTs of 6, 4 and 2.5 days, respectively. The corresponding nitrogen removal rates were 4, 8 and 11 g N.m(-3).d(-1) and the phosphorous removal rates were 0.5, 1.3 and 1.6 g P…

research product

Performance of an outdoor membrane photobioreactor for resource recovery from anaerobically treated sewage

[EN] The objective of this work was to evaluate the performance of a pilot scale membrane photobioreactor (MPBR) for treating the effluent of an anaerobic membrane bioreactor (AnMBR) system. In particular, new experimental data on microalgae productivity, nutrient recovery, CO2 biofixation and energy recovery potential was obtained under different operating conditions, which would facilitate moving towards cost-effective microalgae cultivation on wastewater. To this aim, a 2.2-m(3) MPBR equipped with two commercial-scale hollow-fibre ultrafiltration membrane modules was operated treating the nutrient-loaded effluent from an AnMBR for sewage treatment. The influence of several design, enviro…

research product

Water resource recovery by means of microalgae cultivation in outdoor photobioreactors using the effluent from an anaerobic membrane bioreactor fed with pre-treated sewage.

[EN] With the aim of assessing the potential of microalgae cultivation for water resource recovery (WRR), the performance of three 0.55 m3 flat-plate photobioreactors (PBRs) was evaluated in terms of nutrient removal rate (NRR) and biomass production. The PBRs were operated outdoor (at ambient temperature and light intensity) using as growth media the nutrient-rich effluent from an AnMBR fed with pre-treated sewage. Solar irradiance was the most determining factor affecting NRR. Biomass productivity was significantly affected by temperatures below 20 °C. The maximum biomass productivity (52.3 mg VSS·L−1·d−1) and NRR (5.84 mg NH4-N·L−1·d−1 and 0.85 mg PO4-P·L−1·…

research product

Kinetic modeling of autotrophic microalgae mainline processes for sewage treatment in phosphorus-replete and -deplete culture conditions

[EN] A kinetic model of autotrophic microalgal growth in sewage was developed to determine the biokinetic processes involved, including carbon-, nitrogen- and phosphorus-limited microalgal growth, dependence on light intensity, temperature and pH, light attenuation and gas exchange to the atmosphere. A new feature was the differentiation between two metabolic pathways of phosphorus consumption according to the availability of extracellular phosphorus. Two scenarios were differentiated: phosphorus-replete and -deplete culture conditions. In the former, the microalgae absorbed phosphorus to grow and store polyphosphate. In the latter the microalgae used the stored polyphosphate as a phosphoru…

research product

Short and long-term experiments on the effect of sulphide on microalgae cultivation in tertiary sewage treatment.

[EN] Microalgae cultivation appears to be a promising technology for treating nutrient-rich effluents from anaerobic membrane bioreactors, as microalgae are able to consume nutrients from sewage without an organic carbon source, although the sulphide formed during the anaerobic treatment does have negative effects on microalgae growth. Short and long-term experiments were carried out on the effects of sulphide on a mixed microalgae culture. The short-term experiments showed that the oxygen production rate (OPR) dropped as sulphide concentration increased: a concentration of 5 mg S L¿1 reduced OPR by 43%, while a concentration of 50 mg S L¿1 came close to completely inhibiting microalgae gro…

research product

Effect of light intensity, light duration and photoperiods in the performance of an outdoor photobioreactor for urban wastewater treatment

[EN] A series of eight experiments were carried out to analyse the effects of light intensity, light duration and photoperiods on a microalgae culture for treating AnMBR effluent at an outdoor photobioreactor (PBR) plant. Improved performance was achieved in terms of nutrient recovery rates, biomass productivity and effluent nutrient concentrations at a higher net photon flux. However, the higher irradiance was also responsible for lower biomass productivity:light irradiance ratios. None of the experiments with different lighting regimes and the same net photon flux showed any significant differences. The data obtained suggest that microalgae performance in this system did not depend on the…

research product

Dataset to assess the shadow effect of an outdoor microalgae culture

[EN] This data in brief (DIB) article is related to a Research article [1]. Microalgae biomass absorb the light photons that are supplied to the culture, reducing the light availability in the inner parts of the photobioreactors. This is known as self-shading or shadow effect. This effect has been widely studied in lab conditions, but information about self-shading in outdoor photobioreactors is scarce. How this shadow effect affects the light availability in an outdoor photobioreactor was evaluated. In addition, advantages and disadvantages of different artificial light sources which can overcome light limitation are described.

research product