0000000000043002

AUTHOR

Badr Mohamed Ibrahim Shalaby

showing 6 related works from this author

Spatial beam self-cleaning in multimode fibres

2017

Multimode optical fibres are enjoying a renewed attention, boosted by the urgent need to overcome the current capacity crunch of single-mode fibre systems and by recent advances in multimode complex nonlinear optics [1-13]. In this work, we demonstrate that standard multimode fibres can be used as ultrafast all-optical tool for transverse beam manipulation of high power laser pulses. Our experimental data show that the Kerr effect in a graded-index multimode fibre is the driving mechanism for overcoming speckle distortions, leading to a somewhat counter-intuitive effect resulting in a spatially clean output beam robust against fibre bending. Our observations demonstrate that nonlinear beam …

Optical fiberMaterials scienceKerr effectFOS: Physical sciencesPhysics::Optics02 engineering and technology01 natural scienceslaw.invention010309 opticsSpeckle patternOpticslaw0103 physical sciencesElectronicatomic and molecular physicsoptical and magnetic materialsElectronic Optical and Magnetic Materials; Atomic and Molecular Physics and OpticsComputingMilieux_MISCELLANEOUS[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]Multi-mode optical fiberbusiness.industryNonlinear opticsElectronic; optical and magnetic materials; atomic and molecular physics; optics021001 nanoscience & nanotechnologyLaserAtomic and Molecular Physics and OpticsopticsElectronic Optical and Magnetic Materialsand Optics0210 nano-technologybusinessUltrashort pulseBeam (structure)Optics (physics.optics)Physics - Optics
researchProduct

Observation of Geometric Parametric Instability Induced by the Periodic Spatial Self-Imaging of Multimode Waves

2016

Spatio-temporal mode coupling in highly multimode physical systems permits new routes for exploring complex instabilities and forming coherent wave structures. We present here the first experimental demonstration of multiple geometric parametric instability sidebands, generated in the frequency domain through resonant space-time coupling, owing to the natural periodic spatial self-imaging of a multimode quasi-continuous-wave beam in a standard graded-index multimode fiber. The input beam was launched in the fiber by means of an amplified microchip laser emitting sub-nanosecond pulses at 1064 nm. The experimentally observed frequency spacing among sidebands agrees well with analytical predic…

FOS: Physical sciencesGeneral Physics and AstronomyPhysics::Optics01 natural scienceslaw.invention010309 opticsOpticslaw0103 physical sciencesDispersion (optics)010306 general physicsComputingMilieux_MISCELLANEOUSCouplingPhysics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]Multi-mode optical fiberSidebandbusiness.industryLaserFrequency domain analysis; infrared devices; infrared lasersWavelengthFrequency domainMode coupling[ SPI.OPTI ] Engineering Sciences [physics]/Optics / PhotonicbusinessOptics (physics.optics)Physics - Optics
researchProduct

Spatial and spectral nonlinear shaping of multimode waves

2016

We demonstrate a novel nonlinear dynamics of multimode fibers that reshapes their spectral and spatial beam profiles, based on spatiotemporal modulation instability. Sidebands ranging from the visible to the near-infrared are carried by one and the same spatial bell-shaped profile.

Physics[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Multi-mode optical fiber[ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industrySingle-mode optical fiberPhysics::OpticsPolarization-maintaining optical fiber01 natural sciencesGraded-index fiber010309 opticsAmplitude modulationNonlinear systemOpticsModulation0103 physical sciencesPhysics::Accelerator Physics010306 general physicsbusinessBeam (structure)ComputingMilieux_MISCELLANEOUS
researchProduct

Spatiotemporal Nonlinear Beam Shaping

2016

The reshaping of multimode waves in optical fibers is a process where the spatial and spectral degrees of freedom are inherently coupled. Our experiments demonstrate that pumping a graded-index multimode fiber with sub-ns pulses from a microchip Nd:YAG laser leads to supercontinuum generation with a uniform bell-shaped spatial beam profile.

Optical fiberMaterials scienceMulti-mode optical fiberbusiness.industryPhysics::OpticsLaserlaw.inventionSupercontinuumOpticsNonlinear beamlawPhysics::Accelerator PhysicsBeam shapingFiberbusinessBeam (structure)
researchProduct

Spatial beam cleaning in quadratic nonlinear medium

2018

We show experimentally that a laser beam scrambled by propagation in a short segment of multimode fiber may be cleaned by the nonlinear propagation in KTP cristal with type-II second-harmonic generation.

Multi-mode optical fiberMaterials sciencebusiness.industrynonlinear opticsPotassium titanyl phosphateSecond-harmonic generation02 engineering and technologyquadratic nonlinearity; transverse effects; nonlinear optics021001 nanoscience & nanotechnology01 natural sciences010309 opticsNonlinear systemchemistry.chemical_compoundOpticsQuadratic equationchemistryNonlinear medium0103 physical sciencestransverse effects0210 nano-technologybusinessquadratic nonlinearityLaser beamsBeam (structure)
researchProduct

Spatiotemporal Nonlinear Interactions in Multimode Fibers (invited)

2016

International audience

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]ComputingMilieux_MISCELLANEOUS
researchProduct