On the maximum efficiency of the propeller mass-ejection mechanism
Aims. We derive simple estimates of the maximum efficiency with which matter can be ejected by the propeller mechanism in disk-fed, rotating magnetic neutron stars. Some binary evolution scenarios envisage that this mechanism is responsible for expelling to infinity the mass inflowing at a low rate from the companion star, therefore limiting the total amount of mass that can be accreted by the neutron star. Methods. We demonstrate that, for typical neutron star parameters, a maximum of ��_{pro} < 5.7 (P_{-3})^{1/3} times more matter than accreted can be expelled through the propeller mechanism at the expenses of the neutron star rotational energy (P_{-3} is the NS spin period in unit of …
The transient gravitational-wave sky
Interferometric detectors will very soon give us an unprecedented view of the gravitational-wave sky, and in particular of the explosive and transient Universe. Now is the time to challenge our theoretical understanding of short-duration gravitational-wave signatures from cataclysmic events, their connection to more traditional electromagnetic and particle astrophysics, and the data analysis techniques that will make the observations a reality. This paper summarizes the state of the art, future science opportunities, and current challenges in understanding gravitational-wave transients.