0000000000043318

AUTHOR

Gaetan Lesca

0000-0001-7691-9492

showing 18 related works from this author

IQSEC2-related encephalopathy in males and females: a comparative study including 37 novel patients.

2019

Variants in IQSEC2, escaping X inactivation, cause X-linked intellectual disability with frequent epilepsy in males and females. We aimed to investigate sex-specific differences.

0301 basic medicineMaleGénétique clinique[SDV]Life Sciences [q-bio]MedizinPhysiology030105 genetics & hereditySeizures/epidemiologyEpilepsyBrain Diseases/epidemiologyX-linked inheritanceIntellectual disabilityGuanine Nucleotide Exchange FactorsProtein IsoformsMissense mutationGenetics(clinical)10. No inequalityNon-U.S. Gov'tGenetics (clinical)X-linked recessive inheritanceComputingMilieux_MISCELLANEOUSBrain DiseasesSex CharacteristicsResearch Support Non-U.S. Gov'tBrainSciences bio-médicales et agricoles3. Good healthPedigreePhenotypeintellectual disabilityFemaleBrain/growth & developmentSex characteristicsGénétique moléculaireGuanine Nucleotide Exchange Factors/geneticsEncephalopathyResearch SupportX-inactivationArticle03 medical and health sciencesSeizuresProtein Isoforms/geneticsmedicineJournal ArticleIQSEC2HumansIntellectual Disability/epidemiology[SDV.GEN]Life Sciences [q-bio]/Geneticsbusiness.industryInfant NewbornisoformsCorrectionInfantmedicine.diseaseNewbornHuman genetics030104 developmental biologyMutationepilepsyHuman medicinebusiness[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology
researchProduct

Correction: The landscape of epilepsy-related GATOR1 variants

2019

International audience; The original version of this article contained an error in the spelling of the author Erik H. Niks, which was incorrectly given as Erik Niks. This has now been corrected in both the PDF and HTML versions of the article.

0303 health sciencesbusiness.industryPublished ErratumMEDLINEmedicine.diseasecomputer.software_genreSpelling03 medical and health sciencesEpilepsy0302 clinical medicine[SDV.GEN.GH]Life Sciences [q-bio]/Genetics/Human geneticsmedicineArtificial intelligencebusinessPsychologycomputer030217 neurology & neurosurgeryGenetics (clinical)Natural language processing030304 developmental biology
researchProduct

The landscape of epilepsy-related GATOR1 variants

2019

Purpose:\ud \ud To define the phenotypic and mutational spectrum of epilepsies related to DEPDC5, NPRL2 and NPRL3 genes encoding the GATOR1 complex, a negative regulator of the mTORC1 pathway.\ud \ud Methods:\ud \ud We analyzed clinical and genetic data of 73 novel probands (familial and sporadic) with epilepsy-related variants in GATOR1-encoding genes and proposed new guidelines for clinical interpretation of GATOR1 variants.\ud \ud Results:\ud \ud The GATOR1 seizure phenotype consisted mostly in focal seizures (e.g., hypermotor or frontal lobe seizures in 50%), with a mean age at onset of 4.4 years, often sleep-related and drug-resistant (54%), and associated with focal cortical dysplasia…

Male0301 basic medicineProbandDEPDC5SUDEP030105 genetics & heredityBioinformaticsLoss of Function Mutation/geneticsEpilepsyINDEL MutationLoss of Function MutationmTORC1 pathwayGenetics(clinical)ChildGenetics (clinical)Multiprotein Complexes/geneticsBrugada SyndromeDNA Copy Number VariationBrugada syndromeINDEL Mutation/geneticsGTPase-Activating ProteinsNPRL3SeizureDEPDC5PhenotypePedigree3. Good healthBrugada Syndrome/geneticsChild PreschoolFemaleHumanSignal TransductionDNA Copy Number VariationsAdolescentSeizures/complicationsMechanistic Target of Rapamycin Complex 1/geneticsDNA Copy Number Variations/geneticsMechanistic Target of Rapamycin Complex 1Tumor Suppressor Proteins/geneticsArticleFocal cortical dysplasia03 medical and health sciencesSeizuresGTPase-Activating Proteins/geneticsmedicineHumansGenetic Predisposition to DiseaseDEPDC5; Focal cortical dysplasia; Genetic focal epilepsy; mTORC1 pathway; SUDEPGenetic focal epilepsyEpilepsy/complicationsRepressor Proteins/geneticsEpilepsybusiness.industryGTPase-Activating ProteinTumor Suppressor ProteinsInfant NewbornCorrectionInfantRepressor ProteinCortical dysplasiamedicine.diseaseddc:616.8Repressor Proteins030104 developmental biologyFrontal lobe seizures[SDV.GEN.GH]Life Sciences [q-bio]/Genetics/Human geneticsMultiprotein ComplexesMultiprotein ComplexeSignal Transduction/geneticsHuman medicinebusiness
researchProduct

Correction: IQSEC2-related encephalopathy in males and females:a comparative study including 37 novel patients

2019

This Article was originally published under Nature Research’s License to Publish, but has now been made available under a CC BY 4.0 license. The PDF and HTML versions of the Article have been modified accordingly.

Pediatricsmedicine.medical_specialtyText miningbusiness.industryPublished ErratumEncephalopathyMedizinMEDLINEMedicinebusinessmedicine.diseaseGenetics (clinical)
researchProduct

Mandibular-pelvic-patellar syndrome (mpp) is a novel pitx1-related disorder due to alteration of pitx1 transactivation ability

2020

International audience; PITX1 is a homeobox transcription factor essential for hindlimb morphogenesis. Two PITX1-related human disorders have been reported to date: PITX1 ectopic expression causes Liebenberg syndrome, characterized by malformation of upper limbs showing a "lower limb" appearance; PITX1 deletions or missense variation cause a syndromic picture including clubfoot, tibial hemimelia, and preaxial polydactyly. We report two novel PITX1 missense variants, altering PITX1 transactivation ability, in three individuals from two unrelated families showing a distinct recognizable autosomal dominant syndrome, including first branchial arch, pelvic, patellar, and male genital abnormaliti…

MaleTranscriptional ActivationPathologymedicine.medical_specialtyHindlimb morphogenesis[SDV]Life Sciences [q-bio]Mutation MissensepelvisBiologyPierre-Robin03 medical and health sciencesTransactivationGeneticsmedicineMissense mutationAnimalsHumansPaired Box Transcription FactorsChildPITX1Genetics (clinical)030304 developmental biologyMice Knockoutcleft palate0303 health sciencesBone Diseases Developmental030305 genetics & heredityPreaxial polydactylyInfant NewbornLiebenberg syndromemedicine.disease3. Good healthgenitalpatella[SDV.GEN.GH]Life Sciences [q-bio]/Genetics/Human geneticsChild PreschoolHomeoboxEctopic expressionHaploinsufficiency
researchProduct

Mutations in SLC13A5 Cause Autosomal-Recessive Epileptic Encephalopathy with Seizure Onset in the First Days of Life

2014

International audience; Epileptic encephalopathy (EE) refers to a clinically and genetically heterogeneous group of severe disorders characterized by seizures, abnormal interictal electro-encephalogram, psychomotor delay, and/or cognitive deterioration. We ascertained two multiplex families (including one consanguineous family) consistent with an autosomal-recessive inheritance pattern of EE. All seven affected individuals developed subclinical seizures as early as the first day of life, severe epileptic disease, and profound developmental delay with no facial dysmorphism. Given the similarity in clinical presentation in the two families, we hypothesized that the observed phenotype was due …

Male[SDV]Life Sciences [q-bio]Genes Recessive[SDV.GEN] Life Sciences [q-bio]/GeneticsBiologymedicine.disease_causeCompound heterozygosity03 medical and health sciencesEpilepsy0302 clinical medicineSeizures[ SDV.MHEP ] Life Sciences [q-bio]/Human health and pathologyReportmedicineGeneticsRecessiveHumansIctalGenetics(clinical)[SDV.NEU] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]Genetics (clinical)Exome sequencing030304 developmental biologySubclinical infectionGenetics0303 health sciencesMutation[SDV.GEN]Life Sciences [q-bio]/GeneticsBrain Diseases[SDV.MHEP] Life Sciences [q-bio]/Human health and pathology[ SDV ] Life Sciences [q-bio]SymportersGenetic heterogeneityCitrate transportmedicine.disease3. Good healthPedigree[SDV] Life Sciences [q-bio]Genes[ SDV.NEU ] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]Mutation[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]Female[ SDV.GEN ] Life Sciences [q-bio]/Genetics030217 neurology & neurosurgery[SDV.MHEP]Life Sciences [q-bio]/Human health and pathologyThe American Journal of Human Genetics
researchProduct

DNASE1L3 Deficiency, New Phenotypes and Evidence for a Transient Type I Interferon Signaling

2021

Introduction: Deoxyribonuclease 1 like 3 (DNASE1L3) is a secreted enzyme that has been shown to digest the extracellular chromatin derived from apoptotic bodies, and DNASE1L3 pathogenic variants have been associated to a lupus phenotype. It is unclear whether interferon signaling is sustained in DNASE1L3 deficiency in humans. Objectives: Here, we report on four patients with pathogenic variations in DNASE1L3, including 2 previously undescribed causal variants, and expand the phenotype from SLE to vasculitis with gut involvement. To explore whether or not the interferon cascade was strongly and sustainably induced, Interferon stimulated genes (ISGs) expression was assessed for each patient. …

GeneticsDNASE1L3pathogenic variants C1q deficiencyText miningbusiness.industryInterferonmedicineTransient (computer programming)BiologybusinessPhenotypemedicine.drug
researchProduct

Autosomal-Recessive Mutations in AP3B2, Adaptor-Related Protein Complex 3 Beta 2 Subunit, Cause an Early-Onset Epileptic Encephalopathy with Optic At…

2016

International audience; Early-onset epileptic encephalopathy (EOEE) represents a heterogeneous group of severe disorders characterized by seizures, interictal epileptiform activity with a disorganized electroencephalography background, developmental regression or retardation, and onset before 1 year of age. Among a cohort of 57 individuals with epileptic encephalopathy, we ascertained two unrelated affected individuals with EOEE associated with developmental impairment and autosomal-recessive variants in AP3B2 by means of whole-exome sequencing. The targeted sequencing of AP3B2 in 86 unrelated individuals with EOEE led to the identification of an additional family. We gathered five addition…

0301 basic medicineMaleMicrocephalyDevelopmental DisabilitiesPostnatal microcephalycopper-metabolismEpilepsy0302 clinical medicineexpansionhermansky-pudlak-syndromeddc:576.5Age of OnsetChilddisordersGenetics (clinical)seizuresGeneticsMEDNIK syndromeSyndrome3. Good healthPedigreeintellectual disabilityChild Preschoolmednik syndromeMicrocephalyFemaleDevelopmental regressionAdaptor Protein Complex 3Genes RecessiveBiologyAP3B103 medical and health sciencesAtrophyReport[ SDV.MHEP ] Life Sciences [q-bio]/Human health and pathologyGeneticsmedicineHumansAdaptor Protein Complex beta SubunitsmousediseaseEpilepsyap-4 deficiencyInfant NewbornInfantmedicine.diseaseOptic Atrophy030104 developmental biologyMutationHermansky–Pudlak syndrome030217 neurology & neurosurgery[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology
researchProduct

Whole genome paired-end sequencing elucidates functional and phenotypic consequences of balanced chromosomal rearrangement in patients with developme…

2019

BackgroundBalanced chromosomal rearrangements associated with abnormal phenotype are rare events, but may be challenging for genetic counselling, since molecular characterisation of breakpoints is not performed routinely. We used next-generation sequencing to characterise breakpoints of balanced chromosomal rearrangements at the molecular level in patients with intellectual disability and/or congenital anomalies.MethodsBreakpoints were characterised by a paired-end low depth whole genome sequencing (WGS) strategy and validated by Sanger sequencing. Expression study of disrupted and neighbouring genes was performed by RT-qPCR from blood or lymphoblastoid cell line RNA.ResultsAmong the 55 pat…

AdultMale0301 basic medicineCandidate geneAdolescentDNA Copy Number VariationsDevelopmental Disabilities030105 genetics & heredityGenomeTranslocation GeneticStructural variationChromosome BreakpointsStructure-Activity RelationshipYoung Adult03 medical and health sciencessymbols.namesakeposition effectGeneticsHumansChildGeneGenetic Association StudiesGenetics (clinical)Paired-end tagComputingMilieux_MISCELLANEOUSchromosomal rearrangementsChromosome AberrationsGene RearrangementWhole genome sequencingGeneticsSanger sequencingwhole genome sequencingbiologystructural variationInfantNFIXPhenotype030104 developmental biology[SDV.GEN.GH]Life Sciences [q-bio]/Genetics/Human geneticsintellectual disabilityChild Preschoolbiology.proteinsymbolsFemaleBiomarkers
researchProduct

NEXMIF encephalopathy: an X-linked disorder with male and female phenotypic patterns

2021

Contains fulltext : 231688.pdf (Publisher’s version ) (Closed access) PURPOSE: Pathogenic variants in the X-linked gene NEXMIF (previously KIAA2022) are associated with intellectual disability (ID), autism spectrum disorder, and epilepsy. We aimed to delineate the female and male phenotypic spectrum of NEXMIF encephalopathy. METHODS: Through an international collaboration, we analyzed the phenotypes and genotypes of 87 patients with NEXMIF encephalopathy. RESULTS: Sixty-three females and 24 males (46 new patients) with NEXMIF encephalopathy were studied, with 30 novel variants. Phenotypic features included developmental delay/ID in 86/87 (99%), seizures in 71/86 (83%) and multiple comorbidi…

MalePediatricsmedicine.medical_specialtyINTELLECTUAL DISABILITYAutism Spectrum DisorderEncephalopathyNerve Tissue ProteinsILAE COMMISSIONMOSAICISMEpilepsy/geneticsCLASSIFICATIONEpilepsyBrain Diseases/geneticsGenes X-LinkedSeizuresIntellectual disabilityGenotypemedicineHumansdevelopmental and epileptic encephalopathyMYOCLONIAAtonic seizureGenetics (clinical)Brain Diseasesddc:618Neurodevelopmental disorders Donders Center for Medical Neuroscience [Radboudumc 7]KIAA2022business.industryMUTATIONSmedicine.diseasePhenotypeAutism Spectrum Disorder/geneticsGenes X-Linked/geneticsAutism spectrum disorderintellectual disabilityNEXMIFAutismepilepsyFemaleINACTIVATIONHuman medicineSeizures/geneticsbusinessPOSITION PAPERGenetics in Medicine
researchProduct

Familial thoracic aortic aneurysm/dissection with patent ductus arteriosus: genetic arguments for a particular pathophysiological entity.

2004

International audience; Thoracic aortic aneurysm and aortic dissection (TAA and AD) are an important cause of sudden death. Familial cases could account for 20% of all cases. A genetic heterogeneity with two identified genes (FBN1 and COL3A1) and three loci (3p24-25 or MFS2/TAAD2, 5q13-q14 and 11q23.2-24) has been shown previously. Study of a single family composed of 179 members with an abnormally high occurrence of TAA/AD disease. A total of 40 subjects from three generations were investigated. In addition to five cases of stroke and three cases of sudden death, there were four cases of AD and four cases of TAA in adults. In all, 11 cases of patent ductus arteriosus (PDA) were observed, t…

MalePathologymedicine.medical_specialtycongenital hereditary and neonatal diseases and abnormalitiesGenetic Linkage030204 cardiovascular system & hematologyThoracic aortic aneurysmSudden deathFamilial thoracic aortic aneurysm03 medical and health sciencesAortic aneurysmDeath Sudden0302 clinical medicineDuctus arteriosusGenetic modelGeneticsmedicine[INFO.INFO-IM]Computer Science [cs]/Medical ImagingHumansDuctus Arteriosus PatentGenetics (clinical)030304 developmental biologyAortic dissection0303 health sciences[ INFO.INFO-IM ] Computer Science [cs]/Medical ImagingAortic Aneurysm ThoracicGenetic heterogeneitybusiness.industryAnatomymedicine.disease3. Good healthPedigreeStrokeAortic Dissectionmedicine.anatomical_structureFemaleFrancebusinessMicrosatellite RepeatsEuropean journal of human genetics : EJHG
researchProduct

Widening of the genetic and clinical spectrum of Lamb-Shaffer syndrome, a neurodevelopmental disorder due to SOX5 haploinsufficiency

2020

International audience; PURPOSE: Lamb-Shaffer syndrome (LAMSHF) is a neurodevelopmental disorder described in just over two dozen patients with heterozygous genetic alterations involving SOX5, a gene encoding a transcription factor regulating cell fate and differentiation in neurogenesis and other discrete developmental processes. The genetic alterations described so far are mainly microdeletions. The present study was aimed at increasing our understanding of LAMSHF, its clinical and genetic spectrum, and the pathophysiological mechanisms involved.METHODS: Clinical and genetic data were collected through GeneMatcher and clinical or genetic networks for 41 novel patients harboring various ty…

MaleMedizinHaploinsufficiencyL-SOX5VARIANTS0302 clinical medicineNeurodevelopmental disorderIntellectual disabilityMissense mutation2.1 Biological and endogenous factorsAetiologyChildGenetics (clinical)GeneticsPediatricGenetics & Heredity0303 health sciencesPedigreeFAMILYDNA-Binding Proteinsdevelopmental delayTRANSCRIPTION FACTORSPhenotypeintellectual disabilityChild Preschoolmissense variantsFemalemissense variants.HaploinsufficiencySOXD Transcription FactorsAdultEXPRESSIONAdolescentIntellectual and Developmental Disabilities (IDD)Clinical SciencesMutation MissenseautismCell fate determinationBiologyLONG FORMSEQUENCEArticle03 medical and health sciencesYoung AdultRare DiseasesClinical ResearchCARTILAGEIntellectual DisabilitymedicineGeneticsAnimalsHumansLanguage Development DisordersGenetic Predisposition to DiseasePreschoolTranscription factorGene030304 developmental biology[SDV.GEN]Life Sciences [q-bio]/GeneticsMUTATIONSHuman GenomeInfantmedicine.diseaseBrain DisordersNeurodevelopmental DisordersDeciphering Developmental Disorder StudyMutationAutismepilepsyMissense030217 neurology & neurosurgeryGENERATIONGenetics in Medicine
researchProduct

New insights into the clinical and molecular spectrum of the novel CYFIP2-related neurodevelopmental disorder and impairment of the WRC-mediated acti…

2021

International audience; Purpose: A few de novo missense variants in the cytoplasmic FMRP-interacting protein 2 (CYFIP2) gene have recently been described as a novel cause of severe intellectual disability, seizures, and hypotonia in 18 individuals, with p.Arg87 substitutions in the majority.Methods: We assembled data from 19 newly identified and all 18 previously published individuals with CYFIP2 variants. By structural modeling and investigation of WAVE-regulatory complex (WRC)-mediated actin polymerization in six patient fibroblast lines we assessed the impact of CYFIP2 variants on the WRC.Results: Sixteen of 19 individuals harbor two previously described and 11 novel (likely) disease-ass…

0301 basic medicine[SDV.NEU.NB]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/NeurobiologyWAVEregulatory complex (WRC)030105 genetics & heredityBiologyArticleIntellectual disability; Epilepsy; CYFIP2; WAVE-regulatory complex (WRC); WASF03 medical and health sciencesNeurodevelopmental disorderSeizuresWAVE-regulatory complex (WRC)medicineCYFIP2Missense mutationHumansGenetics(clinical)WASFGeneGenetics (clinical)ActinAdaptor Proteins Signal TransducingGenetics/dk/atira/pure/subjectarea/asjc/2700/2716medicine.diseaseActin cytoskeletonPhenotypeHypotoniaActins3. Good healthddc:030104 developmental biology[SDV.BDD.EO]Life Sciences [q-bio]/Development Biology/Embryology and OrganogenesisNeurodevelopmental Disordersintellectual disabilityCYFIP2epilepsymedicine.symptom
researchProduct

Evaluation of DNA Methylation Episignatures for Diagnosis and Phenotype Correlations in 42 Mendelian Neurodevelopmental Disorders

2020

Contains fulltext : 218274.pdf (Publisher’s version ) (Closed access) Genetic syndromes frequently present with overlapping clinical features and inconclusive or ambiguous genetic findings which can confound accurate diagnosis and clinical management. An expanding number of genetic syndromes have been shown to have unique genomic DNA methylation patterns (called "episignatures"). Peripheral blood episignatures can be used for diagnostic testing as well as for the interpretation of ambiguous genetic test results. We present here an approach to episignature mapping in 42 genetic syndromes, which has allowed the identification of 34 robust disease-specific episignatures. We examine emerging pa…

0301 basic medicine[SDV]Life Sciences [q-bio]Computational biology030105 genetics & heredityBiologyPediatricsArticleCohort Studiesmolecular diagnostics03 medical and health sciencessymbols.namesakeGenetic HeterogeneityGene duplicationGeneticsHumansHunter-McAlpine syndromeGenetics (clinical)Mass screening030304 developmental biologyEpiSignGenetics0303 health sciencesNeurodevelopmental disorders Donders Center for Medical Neuroscience [Radboudumc 7]DNA methylationGenetic heterogeneity030305 genetics & heredityCorrectionSyndromeDNA MethylationMolecular diagnosticsPhenotypePenetranceHuman genetics3. Good healthepisignaturegenomic DNA030104 developmental biologyPhenotypeNeurodevelopmental DisordersDNA methylationuncertain clinical casesMendelian inheritancesymbolsIdentification (biology)VUS classification
researchProduct

Intragenic FMR1 disease-causing variants: a significant mutational mechanism leading to Fragile-X syndrome

2017

International audience; Fragile-X syndrome (FXS) is a frequent genetic form of intellectual disability (ID). The main recurrent mutagenic mechanism causing FXS is the expansion of a CGG repeat sequence in the 5'-UTR of the FMR1 gene, therefore, routinely tested in ID patients. We report here three FMR1 intragenic pathogenic variants not affecting this sequence, identified using high-throughput sequencing (HTS): a previously reported hemizygous deletion encompassing the last exon of FMR1, too small to be detected by array-CGH and inducing decreased expression of a truncated form of FMRP protein, in three brothers with ID (family 1) and two splice variants in boys with sporadic ID: a de novo …

Male0301 basic medicinemedicine.medical_specialtycongenital hereditary and neonatal diseases and abnormalitiesdiagnosisRNA SplicingBiologymedicine.disease_causePolymorphism Single NucleotideArticleFragile X Mental Retardation Protein03 medical and health sciencesExonGenetic linkageplacebo-controlled trial[ SDV.MHEP ] Life Sciences [q-bio]/Human health and pathologyMolecular geneticsGeneticsmedicineHumansgeneGenetics (clinical)GeneticsMutationintron 10SiblingsMiddle Agedmedicine.diseaseFMR1Human genetics3. Good healthFragile X syndromedevelopmental delayof-the-literature030104 developmental biologyintellectual disabilityFragile X SyndromeMutationmental-retardationMedical geneticsFemalepoint mutationdouble-blind[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology
researchProduct

SPEN haploinsufficiency causes a neurodevelopmental disorder overlapping proximal 1p36 deletion syndrome with an episignature of X chromosomes in fem…

2021

Contains fulltext : 231702.pdf (Publisher’s version ) (Closed access) Deletion 1p36 (del1p36) syndrome is the most common human disorder resulting from a terminal autosomal deletion. This condition is molecularly and clinically heterogeneous. Deletions involving two non-overlapping regions, known as the distal (telomeric) and proximal (centromeric) critical regions, are sufficient to cause the majority of the recurrent clinical features, although with different facial features and dysmorphisms. SPEN encodes a transcriptional repressor commonly deleted in proximal del1p36 syndrome and is located centromeric to the proximal 1p36 critical region. Here, we used clinical data from 34 individuals…

0301 basic medicineSHARPMaleobesitygenotype-phenotype correlationsAutism Spectrum DisorderPROTEINChromosome DisordersHaploinsufficiencyRNA-Binding ProteinPHENOTYPE CORRELATIONS1p36; distal 1p36 deletion syndrome; DNA methylome analysis; episignature; genotype-phenotype correlations; neurodevelopmental disorder; obesity; proximal 1p36 deletion syndrome; SPEN; X chromosome; Adolescent; Autism Spectrum Disorder; Child; Child Preschool; Chromosome Deletion; Chromosome Disorders; Chromosomes Human Pair 1; Chromosomes Human X; DNA Methylation; DNA-Binding Proteins; Epigenesis Genetic; Female; Haploinsufficiency; Humans; Intellectual Disability; Male; Neurodevelopmental Disorders; Phenotype; RNA-Binding Proteins; Young AdultEpigenesis GeneticX chromosome0302 clinical medicineNeurodevelopmental disorderNeurodevelopmental DisorderIntellectual disabilityMOLECULAR CHARACTERIZATIONdistal 1p36 deletion syndromeChildGenetics (clinical)X chromosomeGeneticsXDNA methylome analysiRNA-Binding ProteinsSPLIT-ENDSHypotoniaDNA-Binding ProteinsPhenotypeAutism spectrum disorderChromosomes Human Pair 1Child PreschoolDNA methylome analysisMONOSOMY 1P36Pair 1SPENFemalemedicine.symptomChromosome DeletionHaploinsufficiencyRare cancers Radboud Institute for Health Sciences [Radboudumc 9]HumanAdolescentDNA-Binding ProteinBiologygenotype-phenotype correlationChromosomes03 medical and health sciencesYoung AdultGeneticSDG 3 - Good Health and Well-beingReportIntellectual DisabilityREVEALSGeneticsmedicineHumansEpigeneticsPreschoolChromosomes Human XNeurodevelopmental disorders Donders Center for Medical Neuroscience [Radboudumc 7]1p361p36 deletion syndromeIDENTIFICATIONMUTATIONSproximal 1p36 deletion syndromeDNA Methylationmedicine.diseaseneurodevelopmental disorderGENEepisignature030104 developmental biologyChromosome DisorderNeurodevelopmental Disorders030217 neurology & neurosurgeryEpigenesis
researchProduct

A Recurrent De Novo PACS2 Heterozygous Missense Variant Causes Neonatal-Onset Developmental Epileptic Encephalopathy, Facial Dysmorphism, and Cerebel…

2018

International audience; Developmental and epileptic encephalopathies (DEEs) represent a large clinical and genetic heterogeneous group of neurodevelopmental diseases. The identification of pathogenic genetic variants in DEEs remains crucial for deciphering this complex group and for accurately caring for affected individuals (clinical diagnosis, genetic counseling, impacting medical, precision therapy, clinical trials, etc.). Whole-exome sequencing and intensive data sharing identified a recurrent de novo PACS2 heterozygous missense variant in 14 unrelated individuals. Their phenotype was characterized by epilepsy, global developmental delay with or without autism, common cerebellar dysgene…

Male0301 basic medicinePathologyPACS-2Vesicular Transport ProteinsPHENOTYPEBioinformaticsDISEASESensory disorders Donders Center for Medical Neuroscience [Radboudumc 12]Epilepsy0302 clinical medicineMissense mutationGlobal developmental delayAge of OnsetChildGenetics (clinical)Epileptic encephalopathyAPOPTOSIS3. Good healthcerebellar dysgenesisMutation Missense/geneticsintellectual disabilityChild PreschoolEpilepsy GeneralizedFemalePACS2CLINICAL EPILEPSYmedicine.medical_specialtyHeterozygoteGeneralized/geneticsPROTEINSGenetic counselingMutation MissenseMissense/geneticsNeonatal onsetBiologyDIAGNOSISVesicular Transport Proteins/geneticsFacial dysmorphism03 medical and health sciencesDysgenesisAll institutes and research themes of the Radboud University Medical CenterCerebellar DiseasesReportMENDELIAN DISORDERSGeneticsmedicineHumansGeneralized epilepsyPreschoolNeurodevelopmental disorders Donders Center for Medical Neuroscience [Radboudumc 7]Cerebellar Diseases/geneticsbusiness.industryMUTATIONSInfant NewbornCorrectionInfantFaciesNewbornmedicine.disease030104 developmental biology[SDV.GEN.GH]Life Sciences [q-bio]/Genetics/Human geneticsMutationepilepsyAutismbusinessEpilepsy Generalized/genetics030217 neurology & neurosurgery
researchProduct

Wiedemann-Steiner syndrome as a major cause of syndromic intellectual disability: A study of 33 French cases.

2018

International audience; Wiedemann-Steiner syndrome (WSS) is a rare syndromic condition in which intellectual disability (ID) is associated with hypertrichosis cubiti, short stature, and characteristic facies. Following the identification of the causative gene (KMT2A) in 2012, only 31 cases of WSS have been described precisely in the literature. We report on 33 French individuals with a KMT2A mutation confirmed by targeted gene sequencing, high-throughput sequencing or exome sequencing. Patients' molecular and clinical features were recorded and compared with the literature data. On the molecular level, we found 29 novel mutations. We observed autosomal dominant transmission of WSS in 3 fami…

0301 basic medicineHypertrichosisMalePediatrics[SDV]Life Sciences [q-bio]MESH: Magnetic Resonance ImagingPathognomonicMESH: ChildIntellectual disabilityMESH: SyndromeChildMESH: High-Throughput Nucleotide SequencingGenetics (clinical)Exome sequencingComputingMilieux_MISCELLANEOUSbiologyWiedemann-Steiner syndromeHigh-Throughput Nucleotide SequencingSyndromeKMT2AMESH: Amino Acid SubstitutionMagnetic Resonance Imaginghypertrichosis3. Good healthhairinessKMT2APhenotypeWiedemann-Steiner syndromeChild Preschoolcardiovascular systemFemaleDisease SusceptibilityFrancemedicine.symptomMESH: Tomography X-Ray ComputedMyeloid-Lymphoid Leukemia Proteinmedicine.medical_specialtyMESH: MutationAdolescentMESH: Disease SusceptibilityMESH: PhenotypeShort statureMESH: Intellectual Disability03 medical and health sciencesHypertrichosis cubitiIntellectual DisabilityGeneticsmedicineHumanshistone methylationMESH: Adolescent[SDV.GEN]Life Sciences [q-bio]/GeneticsMESH: Humansbusiness.industryMESH: Child PreschoolMESH: Histone-Lysine N-MethyltransferaseHistone-Lysine N-Methyltransferasemedicine.diseaseMESH: MaleMESH: France030104 developmental biology[SDV.GEN.GH]Life Sciences [q-bio]/Genetics/Human geneticsAmino Acid SubstitutionMESH: Myeloid-Lymphoid Leukemia ProteinMutationbiology.proteinbusinessTomography X-Ray ComputedMESH: FemaleClinical genetics
researchProduct