0000000000043342

AUTHOR

Mathieu Milh

showing 5 related works from this author

IQSEC2-related encephalopathy in males and females: a comparative study including 37 novel patients.

2019

Variants in IQSEC2, escaping X inactivation, cause X-linked intellectual disability with frequent epilepsy in males and females. We aimed to investigate sex-specific differences.

0301 basic medicineMaleGénétique clinique[SDV]Life Sciences [q-bio]MedizinPhysiology030105 genetics & hereditySeizures/epidemiologyEpilepsyBrain Diseases/epidemiologyX-linked inheritanceIntellectual disabilityGuanine Nucleotide Exchange FactorsProtein IsoformsMissense mutationGenetics(clinical)10. No inequalityNon-U.S. Gov'tGenetics (clinical)X-linked recessive inheritanceComputingMilieux_MISCELLANEOUSBrain DiseasesSex CharacteristicsResearch Support Non-U.S. Gov'tBrainSciences bio-médicales et agricoles3. Good healthPedigreePhenotypeintellectual disabilityFemaleBrain/growth & developmentSex characteristicsGénétique moléculaireGuanine Nucleotide Exchange Factors/geneticsEncephalopathyResearch SupportX-inactivationArticle03 medical and health sciencesSeizuresProtein Isoforms/geneticsmedicineJournal ArticleIQSEC2HumansIntellectual Disability/epidemiology[SDV.GEN]Life Sciences [q-bio]/Geneticsbusiness.industryInfant NewbornisoformsCorrectionInfantmedicine.diseaseNewbornHuman genetics030104 developmental biologyMutationepilepsyHuman medicinebusiness[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology
researchProduct

Correction: IQSEC2-related encephalopathy in males and females:a comparative study including 37 novel patients

2019

This Article was originally published under Nature Research’s License to Publish, but has now been made available under a CC BY 4.0 license. The PDF and HTML versions of the Article have been modified accordingly.

Pediatricsmedicine.medical_specialtyText miningbusiness.industryPublished ErratumEncephalopathyMedizinMEDLINEMedicinebusinessmedicine.diseaseGenetics (clinical)
researchProduct

Mutations in SLC13A5 Cause Autosomal-Recessive Epileptic Encephalopathy with Seizure Onset in the First Days of Life

2014

International audience; Epileptic encephalopathy (EE) refers to a clinically and genetically heterogeneous group of severe disorders characterized by seizures, abnormal interictal electro-encephalogram, psychomotor delay, and/or cognitive deterioration. We ascertained two multiplex families (including one consanguineous family) consistent with an autosomal-recessive inheritance pattern of EE. All seven affected individuals developed subclinical seizures as early as the first day of life, severe epileptic disease, and profound developmental delay with no facial dysmorphism. Given the similarity in clinical presentation in the two families, we hypothesized that the observed phenotype was due …

Male[SDV]Life Sciences [q-bio]Genes Recessive[SDV.GEN] Life Sciences [q-bio]/GeneticsBiologymedicine.disease_causeCompound heterozygosity03 medical and health sciencesEpilepsy0302 clinical medicineSeizures[ SDV.MHEP ] Life Sciences [q-bio]/Human health and pathologyReportmedicineGeneticsRecessiveHumansIctalGenetics(clinical)[SDV.NEU] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]Genetics (clinical)Exome sequencing030304 developmental biologySubclinical infectionGenetics0303 health sciencesMutation[SDV.GEN]Life Sciences [q-bio]/GeneticsBrain Diseases[SDV.MHEP] Life Sciences [q-bio]/Human health and pathology[ SDV ] Life Sciences [q-bio]SymportersGenetic heterogeneityCitrate transportmedicine.disease3. Good healthPedigree[SDV] Life Sciences [q-bio]Genes[ SDV.NEU ] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]Mutation[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]Female[ SDV.GEN ] Life Sciences [q-bio]/Genetics030217 neurology & neurosurgery[SDV.MHEP]Life Sciences [q-bio]/Human health and pathologyThe American Journal of Human Genetics
researchProduct

Autosomal-Recessive Mutations in AP3B2, Adaptor-Related Protein Complex 3 Beta 2 Subunit, Cause an Early-Onset Epileptic Encephalopathy with Optic At…

2016

International audience; Early-onset epileptic encephalopathy (EOEE) represents a heterogeneous group of severe disorders characterized by seizures, interictal epileptiform activity with a disorganized electroencephalography background, developmental regression or retardation, and onset before 1 year of age. Among a cohort of 57 individuals with epileptic encephalopathy, we ascertained two unrelated affected individuals with EOEE associated with developmental impairment and autosomal-recessive variants in AP3B2 by means of whole-exome sequencing. The targeted sequencing of AP3B2 in 86 unrelated individuals with EOEE led to the identification of an additional family. We gathered five addition…

0301 basic medicineMaleMicrocephalyDevelopmental DisabilitiesPostnatal microcephalycopper-metabolismEpilepsy0302 clinical medicineexpansionhermansky-pudlak-syndromeddc:576.5Age of OnsetChilddisordersGenetics (clinical)seizuresGeneticsMEDNIK syndromeSyndrome3. Good healthPedigreeintellectual disabilityChild Preschoolmednik syndromeMicrocephalyFemaleDevelopmental regressionAdaptor Protein Complex 3Genes RecessiveBiologyAP3B103 medical and health sciencesAtrophyReport[ SDV.MHEP ] Life Sciences [q-bio]/Human health and pathologyGeneticsmedicineHumansAdaptor Protein Complex beta SubunitsmousediseaseEpilepsyap-4 deficiencyInfant NewbornInfantmedicine.diseaseOptic Atrophy030104 developmental biologyMutationHermansky–Pudlak syndrome030217 neurology & neurosurgery[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology
researchProduct

Exome sequencing in congenital ataxia identifies two new candidate genes and highlights a pathophysiological link between some congenital ataxias and…

2019

To investigate the genetic basis of congenital ataxias (CAs), a unique group of cerebellar ataxias with a nonprogressive course, in 20 patients from consanguineous families, and to identify new CA genes. Singleton -exome sequencing on these 20 well-clinically characterized CA patients. We first checked for rare homozygous pathogenic variants, then, for variants from a list of genes known to be associated with CA or very early-onset ataxia, regardless of their mode of inheritance. Our replication cohort of 180 CA patients was used to validate the new CA genes. We identified a causal gene in 16/20 families: six known CA genes (7 patients); four genes previously implicated in another neurologi…

0301 basic medicineMaleCandidate geneAtaxiaAdolescentCerebellar AtaxiaGenotype[SDV]Life Sciences [q-bio]Consanguinity030105 genetics & heredityBiologyPathophysiologyCohort Studies03 medical and health sciencesGenetic HeterogeneityYoung AdultmedicineSTXBP1HumansExomeGenetic Predisposition to DiseaseChildGenetics (clinical)Exome sequencingGeneticsEarly infantile epileptic encephalopathies[SDV.GEN]Life Sciences [q-bio]/GeneticsBRAT1Genetic heterogeneityPhenotype3. Good health030104 developmental biologyPhenotype[SDV.GEN.GH]Life Sciences [q-bio]/Genetics/Human geneticsChild PreschoolMutationCerebellar atrophyCongenital ataxiaAtaxiaFemaleFrancemedicine.symptomSpasms Infantileexome sequencing
researchProduct