0000000000045850
AUTHOR
Miguel Lozano Ibáñez
Inverse estimation of terminal connections in the cardiac conduction system
Modeling the cardiac conduction system is a challenging problem in the context of computational cardiac electrophysiology. Its ventricular section, the Purkinje system, is responsible for triggering tissue electrical activation at discrete terminal locations, which subsequently spreads throughout the ventricles. In this paper, we present an algorithm that is capable of estimating the location of the Purkinje system triggering points from a set of random measurements on tissue. We present the properties and the performance of the algorithm under controlled synthetic scenarios. Results show that the method is capable of locating most of the triggering points in scenarios with a fair ratio bet…
Multi-agent Reinforcement Learning for Simulating Pedestrian Navigation
In this paper we introduce a Multi-agent system that uses Reinforcement Learning (RL) techniques to learn local navigational behaviors to simulate virtual pedestrian groups. The aim of the paper is to study empirically the validity of RL to learn agent-based navigation controllers and their transfer capabilities when they are used in simulation environments with a higher number of agents than in the learned scenario. Two RL algorithms which use Vector Quantization (VQ) as the generalization method for the space state are presented. Both strategies are focused on obtaining a good vector quantizier that generalizes adequately the state space of the agents. We empirically state the convergence…