0000000000046579

AUTHOR

T. Charvolin

showing 12 related works from this author

Near-field spectroscopy of low-loss waveguide integrated microcavities

2006

International audience; A scanning near-field spectroscopy method is used to observe loss reduction and Q-factor enhancement due to transverse-mode profile matching within photonic-crystal microcavities. Near-field measurements performed directly on cavity modes are compared with three-dimensional calculations and quantitative agreement is observed. (c) 2006 American Institute of Physics.

[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]Materials sciencePhysics and Astronomy (miscellaneous)business.industryPhotonic integrated circuitPhysics::OpticsNear and far field01 natural sciencesWaveguide (optics)010309 opticsOptics[ PHYS.PHYS.PHYS-AO-PH ] Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]Q factor0103 physical sciencesOptoelectronicsNear-field scanning optical microscope010306 general physicsbusinessSpectroscopyMicrophotonicsPhotonic crystalApplied Physics Letters
researchProduct

Single-mode room-temperature emission with a silicon rod lattice

2006

The authors experimentally evidence an increase of light emission efficiency at room temperature in a silicon-on-insulator photonic crystal. The photonic crystal is made of a triangular lattice of silicon rods and operates as a single-mode light extractor. It exhibits a luminescence intensity two orders of magnitude higher than silicon-on-insulator substrate. In light of photoluminescence experiments, emission diagram measurements, and finite difference time domain calculations, they identify the different optical properties of the photonic crystal and they demonstrate the existence of at least a fivefold emission efficiency enhancement per surface unit.

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics]Materials sciencePhotoluminescence[SPI.OPTI] Engineering Sciences [physics]/Optics / PhotonicPhysics and Astronomy (miscellaneous)Silicon[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsPhysics::Opticschemistry.chemical_elementSilicon on insulator02 engineering and technology[SPI.MAT] Engineering Sciences [physics]/Materials7. Clean energy01 natural sciences[SPI.MAT]Engineering Sciences [physics]/Materials0103 physical sciencesHexagonal lattice[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsComputingMilieux_MISCELLANEOUSPhotonic crystal010302 applied physics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]business.industry[SPI.ELEC] Engineering Sciences [physics]/Electromagnetism021001 nanoscience & nanotechnologyYablonovite[PHYS.COND.CM-MS] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci][SPI.TRON] Engineering Sciences [physics]/Electronics[SPI.TRON]Engineering Sciences [physics]/Electronics[SPI.ELEC]Engineering Sciences [physics]/Electromagnetismchemistry[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci][SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicOptoelectronicsLight emission0210 nano-technologybusinessLuminescence
researchProduct

Experimental demonstration of Bloch mode parity change in photonic crystal waveguide

2004

We experimentally show coupling between two photonic crystal waveguide Bloch modes having a different parity. A monomode ridge waveguide etched in a silicon-on-insulator substrate and connecting to the photonic crystal waveguide allows us to excite the even Bloch mode. Transmission measurements, performed on a broad spectral range, show the even mode propagation along the defect line. Then, spectrally resolved near-field patterns obtained by using a scanning near-field optical microscope in collection mode for wavelengths, inside and outside the multimode region of the photonic crystal waveguide, clearly demonstrate coupling phenomenon between even and odd modes.

Physics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Multi-mode optical fiber[ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]Physics and Astronomy (miscellaneous)Guided-mode resonancebusiness.industryPhotonic integrated circuitPhysics::Optics02 engineering and technologyMicrostructured optical fiber021001 nanoscience & nanotechnology01 natural sciencesYablonoviteOptics0103 physical sciencesOptoelectronicsNear-field scanning optical microscopeRadiation mode010306 general physics0210 nano-technologybusinessComputingMilieux_MISCELLANEOUSPhotonic crystal
researchProduct

Discontinuity induced angular distribution of photon plasmon coupling

2011

Metal-dielectric transitions are important structures that can display a host of optical characteristics including excitation of plasmons. Metal-dielectric discontinuities can furthermore support plasmon excitation without a severe condition on the incident angle of the exciting photons. Using a semi-infinite thin gold film, we study surface plasmon (SP) excitation and the associated electromagnetic near-field distribution by recording the resulting plasmon interference patterns. In particular, we measure interference periods involving SPs at the scanable metal/air interface and the buried metal/glass one. Supported by optical near-field simulations and experiments, we demonstrate that the …

[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Materials sciencePhotonbusiness.industrySurface plasmonPhysics::Optics02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesSurface plasmon polaritonAtomic and Molecular Physics and OpticsOptics0103 physical sciencesNear-field scanning optical microscopeSurface plasmon resonance010306 general physics0210 nano-technologybusinessPlasmonExcitationLocalized surface plasmon
researchProduct

Sub-wavelength imaging of light confinement and propagation in SOI based photonic crystal devices

2006

A light source is coupled into photonic crystal devices and a near field optical probe is used to observe the electromagnetic field propagation and distribution at a sub-wavelength scale. Bloch modes are clearly observed.

Electromagnetic fieldMaterials sciencebusiness.industryPhotonic integrated circuitNear-field opticsFinite-difference time-domain methodPhysics::OpticsSilicon on insulatorNear and far fieldOpticsOptoelectronicsNear-field scanning optical microscopebusinessPhotonic crystal
researchProduct

Bloch mode coupling investigation in silicon-on-insulator W1 photonic crystal waveguide

2004

We report in this paper the study of a W1 photonic crystal waveguide which supports two Bloch modes having different parity. A monomode ridge waveguide etched in a Silicon-On-Insulator substrate and connecting to the photonic crystal waveguide allows us to excite the even Bloch mode. Transmission measurements, performed on a broad spectral range, evidence the even mode propagation along the defect line and experimental spectrum is discussed in light of band diagram and FDTD calculations. Then spectrally resolved near-field patterns obtained by using a scanning near field optical microscope in collection mode for wavelengths inside and outside the multimode region of the photonic crystal wav…

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics]Materials science[SPI.OPTI] Engineering Sciences [physics]/Optics / Photonic[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsPhysics::OpticsSilicon on insulator[SPI.MAT] Engineering Sciences [physics]/Materials[SPI.MAT]Engineering Sciences [physics]/MaterialsOpticsBand diagram[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsComputingMilieux_MISCELLANEOUSPhotonic crystal[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Multi-mode optical fiberbusiness.industry[SPI.ELEC] Engineering Sciences [physics]/ElectromagnetismPhotonic integrated circuitYablonovite[PHYS.COND.CM-MS] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci][SPI.TRON] Engineering Sciences [physics]/Electronics[SPI.TRON]Engineering Sciences [physics]/Electronics[SPI.ELEC]Engineering Sciences [physics]/ElectromagnetismMode coupling[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci][SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicOptoelectronicsRadiation modebusinessSPIE Proceedings
researchProduct

Subwavelength imaging of field confinement in a waveguide-integrated photonic crystal cavity

2005

A photonic crystal microcavity is designed to obtain an original field distribution inside the cavity and the structure is etched inside a silicon-on-insulator waveguide. Spectral location of the photonic band gap and cavity resonance are identified by using transmittance measurements and by analyzing the light collected by a scanning near-field optical microscope probe exactly positioned on the center of the cavity. The results obtained with the two techniques are in very good agreement. Then the near-field distribution above the device is mapped and light confinement inside the cavity is evidenced. Moreover, this confined light presents some remarkable patterns which clearly correspond to…

Materials scienceField (physics)Physics::OpticsGeneral Physics and AstronomySilicon on insulator02 engineering and technology01 natural sciencesWaveguide (optics)law.inventionOpticsOptical microscopelawEtching0103 physical sciencesTransmittance010306 general physicsComputingMilieux_MISCELLANEOUSPhotonic crystal[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industry021001 nanoscience & nanotechnologyOptoelectronicsNear-field scanning optical microscope0210 nano-technologybusiness
researchProduct

Bloch Modes Coupling in Photonic Crystal Waveguides

2005

We investigate the properties of Bloch modes inside a photonic crystal waveguide. By using simultaneously a near field optical microscope and a transmittance setup, we demonstrate that Bloch modes having different parity are coupled.

Total internal reflectionMaterials sciencebusiness.industryPhysics::OpticsParity (physics)OpticsMicroscopyTransmittanceOptoelectronicsNear-field scanning optical microscopeCrystal opticsbusinessElectron-beam lithographyPhotonic crystalIntegrated Photonics Research and Applications/Nanophotonics for Information Systems
researchProduct

Nanobox array for silicon-on-insulator luminescence enhancement at room temperature

2006

We report the light extraction enhancement obtained at room temperature from a square lattice of crystalline silicon nanoboxes etched in a silicon-on-insulator substrate. Luminescence spectra recorded under optical pumping show a 125 times emission enhancement as compared with the reference unpatterned silicon-on-insulator emission. In light of band diagram calculations, it is demonstrated that the emission enhancement partially results from the coupling between electron-hole recombination inside the silicon boxes and low group velocity optical modes of the array. Moreover, it is observed that these modes present different decoupling lengths and that a complete extraction of luminescence ca…

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics]Materials sciencePhysics and Astronomy (miscellaneous)Silicon[SPI.OPTI] Engineering Sciences [physics]/Optics / Photonic[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronicschemistry.chemical_elementSilicon on insulator02 engineering and technologySubstrate (electronics)[SPI.MAT] Engineering Sciences [physics]/Materials01 natural sciences[SPI.MAT]Engineering Sciences [physics]/MaterialsOptical pumping0103 physical sciencesBand diagramCrystalline silicon[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsComputingMilieux_MISCELLANEOUS010302 applied physics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]business.industry[SPI.ELEC] Engineering Sciences [physics]/Electromagnetism021001 nanoscience & nanotechnology[PHYS.COND.CM-MS] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci][SPI.TRON] Engineering Sciences [physics]/Electronics[SPI.TRON]Engineering Sciences [physics]/Electronics[SPI.ELEC]Engineering Sciences [physics]/Electromagnetismchemistry[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci][SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicOptoelectronicsGroup velocity0210 nano-technologyLuminescencebusiness
researchProduct

A near-field actuated optical nanocavity

2008

International audience; We demonstrate here that switching and tuning of a nanocavity resonance can be achieved by approaching a sub-micrometer tip inside its evanescent near-field. The resonance energy is tuned over a wide spectral range (Δλ/λ~10-3) without significant deterioration of the cavity peak-transmittance and of the resonance linewidth. Such a result is achieved by taking benefits from a weak tip-cavity interaction regime in which the tip behaves as a pure optical path length modulator.

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics]Optics and PhotonicsMaterials science[SPI.OPTI] Engineering Sciences [physics]/Optics / PhotonicTransducersPhysics::OpticsNear and far field02 engineering and technology01 natural sciences010309 opticsLaser linewidthOpticsAtomic and Molecular Physics0103 physical sciencesNanotechnologyOptical path lengthComputingMilieux_MISCELLANEOUSRange (particle radiation)[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryNear-field opticsPhotonic integrated circuitResonanceEquipment Design021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsEquipment Failure AnalysisTransducer[SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicOptoelectronics[ SPI.OPTI ] Engineering Sciences [physics]/Optics / Photonicand Optics0210 nano-technologybusiness
researchProduct

Quality factor control of Si-based two-dimensional photonic crystals with a Bragg mirror

2006

International audience

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][SPI.OPTI] Engineering Sciences [physics]/Optics / Photonic[SPI.ELEC] Engineering Sciences [physics]/Electromagnetism[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[SPI.MAT] Engineering Sciences [physics]/Materials[PHYS.COND.CM-MS] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci][SPI.TRON] Engineering Sciences [physics]/Electronics[SPI.MAT]Engineering Sciences [physics]/Materials[SPI.TRON]Engineering Sciences [physics]/Electronics[SPI.ELEC]Engineering Sciences [physics]/Electromagnetism[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci][SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsComputingMilieux_MISCELLANEOUS
researchProduct

Nano-manipulation of confined electromagnetic fields with a near-field probe

2008

International audience

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][SPI.OPTI] Engineering Sciences [physics]/Optics / Photonic[SPI.ELEC] Engineering Sciences [physics]/Electromagnetism[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[SPI.MAT] Engineering Sciences [physics]/Materials[PHYS.COND.CM-MS] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci][SPI.TRON] Engineering Sciences [physics]/Electronics[SPI.MAT]Engineering Sciences [physics]/Materials[SPI.TRON]Engineering Sciences [physics]/Electronics[SPI.ELEC]Engineering Sciences [physics]/Electromagnetism[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci][SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsComputingMilieux_MISCELLANEOUS
researchProduct