0000000000046644
AUTHOR
Christopher A. Carruthers
Physiological Micromechanics of the Anterior Mitral Valve Leaflet
An improved understanding of mitral valve (MV) function remains an important goal for determining mechanisms underlying valve disease and for developing novel therapies. Critical to heart valve tissue homeostasis is the valvular interstitial cells (VICs), which reside in the interstitium and maintain the extracellular matrix (ECM) through both protein synthesis and enzymatic degradation [1]. There is scant experimental data on the alterations of the MV fiber network reorganization as a function of load, which is critical for implementation of computational strategies that attempt to link this meso-micro scale phenomenon. The observed large scale deformations experienced by VICs could be imp…
From single fiber to macro-level mechanics: A structural finite-element model for elastomeric fibrous biomaterials
In the present work, we demonstrate that the mesoscopic in-plane mechanical behavior of membrane elastomeric scaffolds can be simulated by replication of actual quantified fibrous geometries. Elastomeric electrospun polyurethane (ES-PEUU) scaffolds, with and without particulate inclusions, were utilized. Simulations were developed from experimentally-derived fiber network geometries, based on a range of scaffold isotropic and anisotropic behaviors. These were chosen to evaluate the effects on macro-mechanics based on measurable geometric parameters such as fiber intersections, connectivity, orientation, and diameter. Simulations were conducted with only the fiber material model parameters a…
Preparation and characterization of a biologic scaffold from esophageal mucosa
Biologic scaffolds composed of extracellular matrix (ECM) are commonly used to facilitate a constructive remodeling response in several types of tissue, including the esophagus. Surgical manipulation of the esophagus is often complicated by stricture, but preclinical and clinical studies have shown that the use of an ECM scaffold can mitigate stricture and promote a constructive outcome after resection of full circumference esophageal mucosa. Recognizing the potential benefits of ECM derived from homologous tissue (i.e., site-specific ECM), the objective of the present study was to prepare, characterize, and assess the in-vivo remodeling properties of ECM from porcine esophageal mucosa. The…
The effect of detergents on the basement membrane complex of a biologic scaffold material
The basement membrane complex (BMC) is a critical component of the extracellular matrix (ECM) that supports and facilitates the growth of cells. This study investigates four detergents commonly used in the process of tissue decellularization and their effect upon the BMC. The BMC of porcine urinary bladder was subjected to 3% Triton-X 100, 8 mM 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate (CHAPS), 4% sodium deoxycholate or 1% sodium dodecyl sulfate (SDS) for 24 h. The BMC structure for each treatment group was assessed by immunolabeling, scanning electron microscopy (SEM) and second harmonic generation (SHG) imaging of the fiber network. The composition was assessed by quantif…
Alterations in the Microstructure of the Anterior Mitral Valve Leaflet Under Physiological Stress
An improved understanding of mitral valve (MV) function remains an important goal for determining mechanisms underlying valve disease and for developing novel therapies. Critical to heart valve tissue homeostasis is the valvular interstitial cells (VICs), which reside in the interstitium and maintain the extracellular matrix (ECM) through both protein synthesis and enzymatic degradation [1]. There is scant quantitative experimental data on the alterations of the MV fiber network reorganization as a function of load, which is critical for implementation of computational strategies that attempt to link this meso-micro scale phenomenon. The observed large scale deformations experienced by VICs…