0000000000046711

AUTHOR

Andrea Floris

showing 5 related works from this author

Energy Barrier: Focus on the Essential: Extracting the Decisive Energy Barrier of a Complex Process (Adv. Mater. Interfaces 20/2019)

2019

Arrhenius equationFocus (computing)symbols.namesakeMaterials scienceMechanics of MaterialsAtomic force microscopyMechanical EngineeringScientific methodsymbolsEngineering physicsEnergy (signal processing)Advanced Materials Interfaces
researchProduct

Increasing the Templating Effect on a Bulk Insulator Surface: From a Kinetically Trapped to a Thermodynamically More Stable Structure

2016

Molecular self-assembly, governed by the subtle balance between intermolecular and molecule- surface interactions, is generally associated with the thermodynamic ground state, while the competition between kinetics and thermodynamics during its formation is often neglected. Here, we present a simple model system of a benzoic acid derivative on a bulk insulator surface. Combining high-resolution non-contact atomic force microscopy experiments and density functional theory, we characterize the structure and the thermodynamic stability of a set of temperature-dependent molecular phases formed by 2,5-dihydroxybenzoic acid molecules, self- assembled on the insulating calcite (10.4) surface. We d…

Phase transitionKineticsIntermolecular force02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology53001 natural sciences0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialschemistry.chemical_compoundGeneral EnergychemistryComputational chemistryChemical physicsMoleculeDensity functional theoryChemical stabilityPhysical and Theoretical Chemistry0210 nano-technologyGround stateBenzoic acid
researchProduct

On-surface synthesis on a bulk insulator surface

2018

On-surface synthesis has rapidly emerged as a most promising approach to prepare functional molecular structures directly on a support surface. Compared to solution synthesis, performing chemical reactions on a surface offers several exciting new options: due to the absence of a solvent, reactions can be envisioned that are otherwise not feasible due to the insolubility of the reaction product. Perhaps even more important, the confinement to a two-dimensional surface might enable reaction pathways that are not accessible otherwise. Consequently, on-surface synthesis has attracted great attention in the last decade, with an impressive number of classical reactions transferred to a surface as…

Materials scienceInsulator (electricity)02 engineering and technology010402 general chemistryF160 Organic Chemistry53001 natural sciencesChemical reactionUllmann reactionMetalchemistry.chemical_compoundGeneral Materials ScienceF200 Materials ScienceDiacetylene021001 nanoscience & nanotechnologyCondensed Matter PhysicsCycloaddition0104 chemical sciencesPolymerizationchemistryChemical physicsvisual_artvisual_art.visual_art_mediumF343 Computational PhysicsF320 Chemical PhysicsSupport surface0210 nano-technologyJournal of Physics: Condensed Matter
researchProduct

Focus on the Essential: Extracting the Decisive Energy Barrier of a Complex Process

2019

Molecular processes at surfaces can be composed of a rather complex sequence of steps. The kinetics of even seemingly simple steps are demonstrated to depend on a multitude of factors, which prohibits applying a simple Arrhenius law. This complexity can make it challenging to experimentally determine the kinetic parameters of a single step. However, a molecular-level understanding of molecular processes such as structural transitions requires elucidating the atomistic details of the individual steps. Here, a strategy is presented to extract the energy barrier of a decisive step in a very complex structural transition by systematically addressing all factors that impact the transition kineti…

Materials scienceF300 PhysicsSingle step02 engineering and technology010402 general chemistryKinetic energy53001 natural sciencessurface scienceDissociation (chemistry)symbols.namesakeenergy barrierSurface structureStructural transitionArrhenius equationatomic force microscopyAtomic force microscopyMechanical Engineeringnanoscience021001 nanoscience & nanotechnology0104 chemical sciencesF170 Physical ChemistryArrheniusMechanics of MaterialsChemical physicssymbolsF100 Chemistry0210 nano-technologyAdvanced Materials Interfaces
researchProduct

Mechanisms of covalent dimerization on a bulk insulating surface

2017

Combining density functional theory and high resolution NC-AFM experiments, we have studied the on surface reaction mechanisms' responsible for the covalent dimerization of 4-iodobenzoic acid (IBA) organic molecules on the calcite (10.4), insulating surface. When annealed at 580 K, the Molecules assemble in one-dimensional chains of covalently bound dimers: The chains have a unique orientation and result from a complex set of processes, including a nominally rather. costly double dehalogenation reaction followed by dimerization. First, focusing on the latter two processes and using the nudged elastic band method, we analyze a number of possible mechanisms involving one and two molecules, an…

Exothermic reactionReaction mechanismStereochemistryChemistryHalogenation02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology53001 natural sciences0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCatalysisGeneral EnergyF170 Physical ChemistryCovalent bondChemical physicsIntermediate stateMoleculeDensity functional theoryF200 Materials ScienceF343 Computational PhysicsPhysical and Theoretical Chemistry0210 nano-technology
researchProduct