0000000000046712

AUTHOR

Chiara Paris

showing 3 related works from this author

Energy Barrier: Focus on the Essential: Extracting the Decisive Energy Barrier of a Complex Process (Adv. Mater. Interfaces 20/2019)

2019

Arrhenius equationFocus (computing)symbols.namesakeMaterials scienceMechanics of MaterialsAtomic force microscopyMechanical EngineeringScientific methodsymbolsEngineering physicsEnergy (signal processing)Advanced Materials Interfaces
researchProduct

Increasing the Templating Effect on a Bulk Insulator Surface: From a Kinetically Trapped to a Thermodynamically More Stable Structure

2016

Molecular self-assembly, governed by the subtle balance between intermolecular and molecule- surface interactions, is generally associated with the thermodynamic ground state, while the competition between kinetics and thermodynamics during its formation is often neglected. Here, we present a simple model system of a benzoic acid derivative on a bulk insulator surface. Combining high-resolution non-contact atomic force microscopy experiments and density functional theory, we characterize the structure and the thermodynamic stability of a set of temperature-dependent molecular phases formed by 2,5-dihydroxybenzoic acid molecules, self- assembled on the insulating calcite (10.4) surface. We d…

Phase transitionKineticsIntermolecular force02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology53001 natural sciences0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialschemistry.chemical_compoundGeneral EnergychemistryComputational chemistryChemical physicsMoleculeDensity functional theoryChemical stabilityPhysical and Theoretical Chemistry0210 nano-technologyGround stateBenzoic acid
researchProduct

Focus on the Essential: Extracting the Decisive Energy Barrier of a Complex Process

2019

Molecular processes at surfaces can be composed of a rather complex sequence of steps. The kinetics of even seemingly simple steps are demonstrated to depend on a multitude of factors, which prohibits applying a simple Arrhenius law. This complexity can make it challenging to experimentally determine the kinetic parameters of a single step. However, a molecular-level understanding of molecular processes such as structural transitions requires elucidating the atomistic details of the individual steps. Here, a strategy is presented to extract the energy barrier of a decisive step in a very complex structural transition by systematically addressing all factors that impact the transition kineti…

Materials scienceF300 PhysicsSingle step02 engineering and technology010402 general chemistryKinetic energy53001 natural sciencessurface scienceDissociation (chemistry)symbols.namesakeenergy barrierSurface structureStructural transitionArrhenius equationatomic force microscopyAtomic force microscopyMechanical Engineeringnanoscience021001 nanoscience & nanotechnology0104 chemical sciencesF170 Physical ChemistryArrheniusMechanics of MaterialsChemical physicssymbolsF100 Chemistry0210 nano-technologyAdvanced Materials Interfaces
researchProduct