0000000000046715

AUTHOR

Simon Aeschlimann

Energy Barrier: Focus on the Essential: Extracting the Decisive Energy Barrier of a Complex Process (Adv. Mater. Interfaces 20/2019)

research product

Increasing the Templating Effect on a Bulk Insulator Surface: From a Kinetically Trapped to a Thermodynamically More Stable Structure

Molecular self-assembly, governed by the subtle balance between intermolecular and molecule- surface interactions, is generally associated with the thermodynamic ground state, while the competition between kinetics and thermodynamics during its formation is often neglected. Here, we present a simple model system of a benzoic acid derivative on a bulk insulator surface. Combining high-resolution non-contact atomic force microscopy experiments and density functional theory, we characterize the structure and the thermodynamic stability of a set of temperature-dependent molecular phases formed by 2,5-dihydroxybenzoic acid molecules, self- assembled on the insulating calcite (10.4) surface. We d…

research product

Back Cover: Mobilization upon Cooling (Angew. Chem. Int. Ed. 35/2021)

research product

Mobilization upon Cooling

Abstract Phase transitions between different aggregate states are omnipresent in nature and technology. Conventionally, a crystalline phase melts upon heating as we use ice to cool a drink. Already in 1903, Gustav Tammann speculated about the opposite process, namely melting upon cooling. So far, evidence for such “inverse” transitions in real materials is rare and limited to few systems or extreme conditions. Here, we demonstrate an inverse phase transition for molecules adsorbed on a surface. Molybdenum tetraacetate on copper(111) forms an ordered structure at room temperature, which dissolves upon cooling. This transition is mediated by molecules becoming mobile, i.e., by mobilization up…

research product

Focus on the Essential: Extracting the Decisive Energy Barrier of a Complex Process

Molecular processes at surfaces can be composed of a rather complex sequence of steps. The kinetics of even seemingly simple steps are demonstrated to depend on a multitude of factors, which prohibits applying a simple Arrhenius law. This complexity can make it challenging to experimentally determine the kinetic parameters of a single step. However, a molecular-level understanding of molecular processes such as structural transitions requires elucidating the atomistic details of the individual steps. Here, a strategy is presented to extract the energy barrier of a decisive step in a very complex structural transition by systematically addressing all factors that impact the transition kineti…

research product

Von geordneten zu mobilen Molekülen durch Kühlen

Phasenübergänge zwischen unterschiedlichen Aggregatzuständen sind in Natur und Technik allgegenwärtig. Üblicherweise schmilzt ein Kristall, wenn er erwärmt wird. Daher nutzen wir Eis, um einen Drink zu kühlen. Bereits im Jahre 1903 spekulierte Gustav Tammann über den umgekehrten Prozess des Schmelzens durch Kühlen. Bisher gibt es allerdings nur sehr wenige Beispiele für solche “inversen” Phasenübergänge, die meist auch auf extreme Bedingungen beschränkt sind. Hier zeigen wir einen inversen Phasenübergang von adsorbierten Molekülen auf einer Oberfläche. Molybdänacetat bildet bei Zimmertemperatur eine geordnete Struktur auf der (111)-Oberfläche von Kupfer, die sich beim Kühlen auflöst. Dieser…

research product

Rücktitelbild: Von geordneten zu mobilen Molekülen durch Kühlen (Angew. Chem. 35/2021)

research product