0000000000046715

AUTHOR

Simon Aeschlimann

showing 7 related works from this author

Energy Barrier: Focus on the Essential: Extracting the Decisive Energy Barrier of a Complex Process (Adv. Mater. Interfaces 20/2019)

2019

Arrhenius equationFocus (computing)symbols.namesakeMaterials scienceMechanics of MaterialsAtomic force microscopyMechanical EngineeringScientific methodsymbolsEngineering physicsEnergy (signal processing)Advanced Materials Interfaces
researchProduct

Increasing the Templating Effect on a Bulk Insulator Surface: From a Kinetically Trapped to a Thermodynamically More Stable Structure

2016

Molecular self-assembly, governed by the subtle balance between intermolecular and molecule- surface interactions, is generally associated with the thermodynamic ground state, while the competition between kinetics and thermodynamics during its formation is often neglected. Here, we present a simple model system of a benzoic acid derivative on a bulk insulator surface. Combining high-resolution non-contact atomic force microscopy experiments and density functional theory, we characterize the structure and the thermodynamic stability of a set of temperature-dependent molecular phases formed by 2,5-dihydroxybenzoic acid molecules, self- assembled on the insulating calcite (10.4) surface. We d…

Phase transitionKineticsIntermolecular force02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology53001 natural sciences0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialschemistry.chemical_compoundGeneral EnergychemistryComputational chemistryChemical physicsMoleculeDensity functional theoryChemical stabilityPhysical and Theoretical Chemistry0210 nano-technologyGround stateBenzoic acid
researchProduct

Back Cover: Mobilization upon Cooling (Angew. Chem. Int. Ed. 35/2021)

2021

HydrologyMobilizationINTCover (algebra)General ChemistryCatalysisGeologyAngewandte Chemie International Edition
researchProduct

Mobilization upon Cooling

2021

Abstract Phase transitions between different aggregate states are omnipresent in nature and technology. Conventionally, a crystalline phase melts upon heating as we use ice to cool a drink. Already in 1903, Gustav Tammann speculated about the opposite process, namely melting upon cooling. So far, evidence for such “inverse” transitions in real materials is rare and limited to few systems or extreme conditions. Here, we demonstrate an inverse phase transition for molecules adsorbed on a surface. Molybdenum tetraacetate on copper(111) forms an ordered structure at room temperature, which dissolves upon cooling. This transition is mediated by molecules becoming mobile, i.e., by mobilization up…

Phase transitionMaterials scienceCommunicationSTMDegrees of freedom (physics and chemistry)chemistry.chemical_elementmolecular self-assemblyGeneral Chemistry540Phase Transition | Very Important PaperCopperCommunicationsCatalysisAdsorptioninverse meltingchemistryphase transitionChemical physicsMolybdenumPhase (matter)MoleculeMonte Carlo simulation
researchProduct

Focus on the Essential: Extracting the Decisive Energy Barrier of a Complex Process

2019

Molecular processes at surfaces can be composed of a rather complex sequence of steps. The kinetics of even seemingly simple steps are demonstrated to depend on a multitude of factors, which prohibits applying a simple Arrhenius law. This complexity can make it challenging to experimentally determine the kinetic parameters of a single step. However, a molecular-level understanding of molecular processes such as structural transitions requires elucidating the atomistic details of the individual steps. Here, a strategy is presented to extract the energy barrier of a decisive step in a very complex structural transition by systematically addressing all factors that impact the transition kineti…

Materials scienceF300 PhysicsSingle step02 engineering and technology010402 general chemistryKinetic energy53001 natural sciencessurface scienceDissociation (chemistry)symbols.namesakeenergy barrierSurface structureStructural transitionArrhenius equationatomic force microscopyAtomic force microscopyMechanical Engineeringnanoscience021001 nanoscience & nanotechnology0104 chemical sciencesF170 Physical ChemistryArrheniusMechanics of MaterialsChemical physicssymbolsF100 Chemistry0210 nano-technologyAdvanced Materials Interfaces
researchProduct

Von geordneten zu mobilen Molekülen durch Kühlen

2021

Phasenübergänge zwischen unterschiedlichen Aggregatzuständen sind in Natur und Technik allgegenwärtig. Üblicherweise schmilzt ein Kristall, wenn er erwärmt wird. Daher nutzen wir Eis, um einen Drink zu kühlen. Bereits im Jahre 1903 spekulierte Gustav Tammann über den umgekehrten Prozess des Schmelzens durch Kühlen. Bisher gibt es allerdings nur sehr wenige Beispiele für solche “inversen” Phasenübergänge, die meist auch auf extreme Bedingungen beschränkt sind. Hier zeigen wir einen inversen Phasenübergang von adsorbierten Molekülen auf einer Oberfläche. Molybdänacetat bildet bei Zimmertemperatur eine geordnete Struktur auf der (111)-Oberfläche von Kupfer, die sich beim Kühlen auflöst. Dieser…

Materials scienceGeneral Medicine540
researchProduct

Rücktitelbild: Von geordneten zu mobilen Molekülen durch Kühlen (Angew. Chem. 35/2021)

2021

General MedicineAngewandte Chemie
researchProduct