Optimum design for work-hardening adaptation
Abstract The finite element-linear programming approach and the work-hardening adaptation criterion are used to formulate a general theory of optimum design of rigid-work-hardening structures subjected to loads which vary statically within given limits. Self-weight, as well as some technological constraints, can be introduced into the framework of the optimization problem. The optimality conditions are discussed with the aid of geometrical descriptions as well, and a comparison is made with the standard limit design. Numerical applications are given for a plane truss and a plane frame with axial force-bending moment interaction.