0000000000046889

AUTHOR

C. Hennig

Combining EXAFS and XRay Powder Diffraction to Solve Structures Containing Heavy Atoms

Determination of structures using x-ray powder diffraction is complicated if the reflection intensities are mainly influenced by the scattering from heavy atoms and the atomic coordinates of light atoms remain uncertain. A method like EXAFS, which is sensitive to short range order, gives reliable atomic distances in the surroundings of heavy atoms with a precision of ±0.02 A. The probability for obtaining the complete structure from x-ray powder diffraction increases if one includes parameters derived from EXAFS measurements as restraints during the procedure of structure solving. We demonstrate the potential of combining EXAFS and x-ray powder diffraction by solving the structure UO2[H2AsO…

research product

21. Mainzer Allergie-Workshop

research product

Observation of instabilities in a Paul trap with higher-order anharmonicities

Systematic measurements of the relative ion number stored in a Paul trap within the stability diagram given by the solution of the equation of motion reveal many lines, where only few or no ions can be confined. The observations can be explained by the presence of perturbations from higher-order components in the trapping potential, which is a quadrupole potential in the ideal case. The resonances follow the equation (nr/2)βr + (nr/2)βz = 1,nr +nz =N, where 2N is the order of the perturbation,nr,nz are integer andβr,βz are stability parameters of the trap. The experiments were performed on H+ and H2+ ions, which are detected after a storage time of 0.3 s by ejection from the trap.

research product

Technical challenges in the construction of the steady-state stellarator Wendelstein 7-X

The next step in the Wendelstein stellarator line is the large superconducting device Wendelstein 7-X, currently under construction in Greifswald, Germany. Steady-state operation is an intrinsic feature of stellarators, and one key element of the Wendelstein 7-X mission is to demonstrate steady-state operation under plasma conditions relevant for a fusion power plant. Steady-state operation of a fusion device, on the one hand, requires the implementation of special technologies, giving rise to technical challenges during the design, fabrication and assembly of such a device. On the other hand, also the physics development of steady-state operation at high plasma performance poses a challeng…

research product