0000000000047025

AUTHOR

Oleksii Volodymyrovych Klymov

showing 4 related works from this author

MOCVD growth of CdO very thin films: Problems and ways of solution

2016

Abstract In this paper the growth of CdO by the MOCVD technique at atmospheric pressure has been studied in order to achieve very thin films of this material on r-sapphire substrates. The growth evolution of these films was discussed and the existence of a threshold thickness, below which island-shaped structures appear, was demonstrated. Some alternatives to reduce this threshold thickness have been proposed in the frame of the analysis of the crystal growth process. The morphology and structural properties of the films were analyzed by means of SEM and HRXRD. High-quality flat CdO samples were achieved with thicknesses up to 20 nm, which is five times thinner than the values previously re…

010302 applied physicsMaterials scienceAtmospheric pressureGeneral Physics and AstronomyNanotechnologyCrystal growth02 engineering and technologySurfaces and InterfacesGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSurfaces Coatings and Films0103 physical sciencesMetalorganic vapour phase epitaxyThin filmComposite material0210 nano-technologyApplied Surface Science
researchProduct

Self-assembled metal-oxide nanoparticles on GaAs: infrared absorption enabled by localized surface plasmons

2021

Abstract Metal-oxides hold promise as superior plasmonic materials in the mid-infrared compared to metals, although their integration over established material technologies still remains challenging. We demonstrate localized surface plasmons in self-assembled, hemispherical CdZnO metal-oxide nanoparticles on GaAs, as a route to enhance the absorption in mid-infrared photodetectors. In this system, two localized surface plasmon modes are identified at 5.3 and 2.7 μm, which yield an enhancement of the light intensity in the underlying GaAs. In the case of the long-wavelength mode the enhancement is as large as 100 near the interface, and persists at depths down to 50 nm. We show numerically t…

Materials sciencequantum wellQC1-999Infrared spectroscopy02 engineering and technologyMetal oxide nanoparticles01 natural sciencesSelf assembledmetal-oxide0103 physical sciencesElectrical and Electronic Engineeringintersubband transition010306 general physicsQuantum wellcdolocalized surface plasmonbusiness.industryPhysics021001 nanoscience & nanotechnologyCondensed Matter::Mesoscopic Systems and Quantum Hall EffectAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsOptoelectronics0210 nano-technologybusinessBiotechnologyLocalized surface plasmonNanophotonics
researchProduct

Spontaneous intercalation of Ga and In bilayers during plasma-assisted molecular beam epitaxy growth of GaN on graphene on SiC

2019

The formation of a self-limited metallic bilayer is reported during the growth of GaN by plasma-assisted molecular beam epitaxy on graphene on (0001) SiC. Depending on growth conditions, this layer may consist of either Ga or In, which gets intercalated between graphene and the SiC surface. Diffusion of metal atoms is eased by steps at SiC surface and N plasma induced defects in the graphene layer. Energetically favorable wetting of the (0001) SiC surface by Ga or In is tentatively assigned to the breaking of covalent bonds between (0001) SiC surface and carbon buffer layer. As a consequence, graphene doping and local strain/doping fluctuations decrease. Furthermore, the presence of a metal…

Materials scienceBioengineeringCrystal growth02 engineering and technology010402 general chemistryEpitaxy7. Clean energy01 natural scienceslaw.inventionlawGeneral Materials ScienceElectrical and Electronic Engineering[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]ComputingMilieux_MISCELLANEOUS[PHYS]Physics [physics]Graphenebusiness.industryMechanical EngineeringBilayerDopingGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesMechanics of Materials[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci][SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicOptoelectronicsWetting0210 nano-technologybusinessLayer (electronics)Molecular beam epitaxy
researchProduct

Effect of Mn Doping on the Optical Properties of Chalcogenide Compounds ZnS and ZnTe

2020

In this paper, the influence of the addition of Mn on the optical properties of the binary compounds ZnS and ZnTe deposited by a close-spaced vacuum sublimation method onto nonoriented glass at different substrate temperatures was considered. The spectral dependences of the transmittance T (λ), reflectance R (λ) and the absorption α (λ), as well as the bandgap for each material (Eg) were measured and calculated.

chemistry.chemical_compoundMaterials scienceVacuum sublimationchemistryBand gapChalcogenideAnalytical chemistryTransmittanceMn dopingSubstrate (electronics)Absorption (electromagnetic radiation)Reflectivity
researchProduct