MOCVD growth of CdO very thin films: Problems and ways of solution
Abstract In this paper the growth of CdO by the MOCVD technique at atmospheric pressure has been studied in order to achieve very thin films of this material on r-sapphire substrates. The growth evolution of these films was discussed and the existence of a threshold thickness, below which island-shaped structures appear, was demonstrated. Some alternatives to reduce this threshold thickness have been proposed in the frame of the analysis of the crystal growth process. The morphology and structural properties of the films were analyzed by means of SEM and HRXRD. High-quality flat CdO samples were achieved with thicknesses up to 20 nm, which is five times thinner than the values previously re…
Cathodoluminescence characterization of ZnO/ZnS nanostructures anodized under hydrodynamic conditions
[EN] ZnO/ZnS nanostructures were successfully synthesized by a simple electrochemical anodization of zinc in a glycerol based electrolyte containing sulfide-ammonium fluoride. The influence of different hydrodynamic conditions and anodization potentials during anodization on the morphological and electronic properties of the obtained ZnO/ZnS nanostructures was studied. The anodized samples were characterized using confocal Raman microscopy, X-Ray Diffraction (XRD), Field Emission Scanning Electronic Microscopy (FE-SEM), cathodoluminescence (CL), and photoelectrochemical water splitting tests under standard AM 1.5 conditions. The results showed that hydrodynamic conditions and higher potenti…
Rock-salt CdZnO as a transparent conductive oxide
Transparent conducting oxides (TCOs) are widely used in applications from solar cells to light emitting diodes. Here, we show that the metal organic chemical vapor deposition (MOCVD)-grown, rock-salt CdZnO ternary, has excellent potential as a TCO. To assess this compound, we use a combination of infrared reflectance and ultraviolet-visible absorption spectroscopies, together with Hall effect, to determine its optical and electrical transport characteristics. It is found that the incorporation of Zn produces an increment of the electron concentration and mobility, yielding lower resistivities than those of CdO, with a minimum of 1.96 × 10 − 4 Ω · cm for a Zn content of 10%. Moreover, due to…
Self-assembled metal-oxide nanoparticles on GaAs: infrared absorption enabled by localized surface plasmons
Abstract Metal-oxides hold promise as superior plasmonic materials in the mid-infrared compared to metals, although their integration over established material technologies still remains challenging. We demonstrate localized surface plasmons in self-assembled, hemispherical CdZnO metal-oxide nanoparticles on GaAs, as a route to enhance the absorption in mid-infrared photodetectors. In this system, two localized surface plasmon modes are identified at 5.3 and 2.7 μm, which yield an enhancement of the light intensity in the underlying GaAs. In the case of the long-wavelength mode the enhancement is as large as 100 near the interface, and persists at depths down to 50 nm. We show numerically t…
A Controllable and Highly Propagative Hybrid Surface Plasmon-Phonon Polariton in a CdZnO-based Two-Interface System
The development of new nanophotonic devices requires the understanding and modulation of the propagating surface plasmon and phonon modes arising in plasmonic and polar dielectric materials, respectively. Here we explore the CdZnO alloy as a plasmonic material, with a tunable plasma frequency and reduced losses compared to pure CdO. By means of attenuated total reflectance, we experimentally observe the hybridization of the surface plasmon polariton (SPP) with the surface phonon polariton (SPhP) in the air-CdZnO-sapphire three-layer system. We show how through the precise control of the CdZnO thickness, the resonance frequencies of the hybrid surface plasmon-phonon polariton (SPPP) are tune…