0000000000047041
AUTHOR
Nripan Mathews
Working Principles of Perovskite Solar Cells
Self-assembled hierarchical nanostructured perovskites enable highly efficient LEDs via an energy cascade
Metal halide perovskites have established themselves as extraordinary optoelectronic materials, exhibiting promise for applications in large area illumination and displays. However, low luminescence, low efficiencies of the light-emitting diodes (LEDs), and complex preparation methods currently limit further progress towards applications. Here, we report on a new and unique mesoscopic film architecture featuring the self-assembly of 3D formamidinium lead bromide (FAPbBr3) nanocrystals of graded size, coupled with microplatelets of octylammonium lead bromide perovskites that enables an energy cascade, yielding very high-performance light-emitting diodes with emission in the green spectral re…
Advances in Perovskite Optoelectronics: Bridging the Gap Between Laboratory and Fabrication
In 2019, hybrid halide perovskites celebrated their 10th anniversary as a "wonder material" for optoelectronic applications. Although the parent perovskite structures were elucidated in the late 19th century, the seminal work by Miyasaka et al. exploiting organic‐inorganic hybrid halide perovskites sensitizers for visible‐light conversion in solar cells marked the revisit of these materials and has proven to be a game‐changer in this field. Extensive investigations were undertaken to develop new materials (all inorganic and organic‐inorganic hybrids, in the form of films or alternate morphologies) and deposition techniques, explore interfaces and in‐depth characterization, while engineering…
Applications of vacuum vapor deposition for perovskite solar cells: A progress review
Metal halide perovskite solar cells (PSCs) have made substantial progress in power conversion efficiency (PCE) and stability in the past decade thanks to the advancements in perovskite deposition methodology, charge transport layer (CTL) optimization, and encapsulation technology. Solution-based methods have been intensively investigated and a 25.7% certified efficiency has been achieved. Vacuum vapor deposition protocols were less studied, but have nevertheless received increasing attention from industry and academia due to the great potential for large-area module fabrication, facile integration with tandem solar cell architectures, and compatibility with industrial manufacturing approach…
Perovskite nanoparticles : synthesis, properties, and novel applications in photovoltaics and LEDs
Solar cells and light-emitting diodes (LEDs) based on metal-halide perovskites are transitioning from promising performers to direct competitors to well-established technologies, with cost-effectiveness as a strong advantage. Nanostructured perovskites have yielded record LEDs due to their higher versatility in the local management of charge carriers, which has enabled photoluminescence quantum yields (PLQYs) close to 100%. However, these perovskite nanostructures are yet to be fully exploited in other applications such as photovoltaics, where they can also present competitive advantages as they enable feasible routes to surpass the Shockley–Queisser limit by means of multiexciton generatio…
Highly Efficient Thermally Co-evaporated Perovskite Solar Cells and Mini-modules
The rapid improvement in the power conversion efficiency (PCE) of perovskite solar cells (PSCs) has prompted interest in bringing the technology toward commercialization. Capitalizing on existing industrial processes facilitates the transition from laboratory to production lines. In this work, we prove the scalability of thermally co-evaporated MAPbI3 layers in PSCs and mini-modules. With a combined strategy of active layer engineering, interfacial optimization, surface treatments, and light management, we demonstrate PSCs (0.16 cm2 active area) and mini-modules (21 cm2 active area) achieving record PCEs of 20.28% and 18.13%, respectively. Un-encapsulated PSCs retained ∼90% of their initial…