0000000000047053
AUTHOR
Afnan Al-hunaiti
Organocatalytic Oxidation of Secondary Alcohols Using 1,2-Di(1-naphthyl)-1,2-ethanediamine (NEDA) (Eur. J. Org. Chem. 28/2014)
Solvent free oxidation of primary alcohols and diols using thymine iron(III) catalyst.
In this study, we developed an efficient and selective iron-based catalyst system for the synthesis of ketones from secondary alcohols and carboxylic acids from primary alcohol. In situ generated iron catalyst of thymine-1-acetate (THA) and FeCl(3) under solvent-free condition exhibits high activity. As an example, 1-octanol and 2-octanol were oxidized to 1-octanoic acid and 2-octanone with 89% and 98% yields respectively.
Organocatalytic Oxidation of Secondary Alcohols Using 1,2-Di(1-naphthyl)-1,2-ethanediamine (NEDA)
Diamine, 1,2-di(1-naphthyl)-1,2-ethanediamine (NEDA), efficiently catalyzes the oxidation of alcohols by using TBHP as an oxidant. Notably, secondary benzyl alcohols are oxidized in almost quantitative yields, and the catalyst also displays high activity towards even hindered cycloaliphatic secondary alcohols. With enantiopure (R,R)-NEDA, oxidative kinetic resolution can be realized and depending on the alcohol ee up to 99 % are achieved.
Catalytic Oxidation of Alkanes and Alkenes by H 2 O 2 with a μ‐Oxido Diiron(III) Complex as Catalyst/Catalyst Precursor
A new mu-oxo diiron(III) complex of the lithium salt of the pyridine-based unsymmetrical ligand 3-[(3-{[bis(pyridin-2-ylmethyl)amino]methyl}-2-hydroxy-5-methylbenzyl)(pyridin2-ylmethyl)amino] propanoate (LiDPCPMPP), [Fe-2(mu-O)(LiDPCPMPP)(2)](ClO4)(2), has been synthesized and characterized. The ability of the complex to catalyze oxidation of several alkanes and alkenes has been investigated by using CH3COOH/H2O2 (1:1) as an oxidative system. Moderate activity in cyclohexane oxidation (TOF = 33 h(-1)) and good activity in cyclohexene oxidation (TOF = 72 h(-1)) were detected. Partial retention of configuration (RC = 53%) in cis- and trans-1,2-dimethylcyclohexane oxidation, moderate 3 degrees…
Di- and Tetrairon(III) μ-Oxido Complexes of an N3S-Donor Ligand: Catalyst Precursors for Alkene Oxidations
The new di- and tetranuclear Fe(III) μ-oxido complexes [Fe 4 (μ-O) 4 (PTEBIA) 4 ](CF 3 SO 3 ) 4 (CH 3 CN) 2 ] (1a), [Fe 2 (μ-O)Cl 2 (PTEBIA) 2 ](CF 3 SO 3 ) 2 (1b), and [Fe 2 (μ-O)(HCOO) 2 (PTEBIA) 2 ](ClO 4 ) 2 (MeOH) (2) were prepared from the sulfur-containing ligand (2-((2,4-dimethylphenyl)thio)-N,N-bis ((1-methyl-benzimidazol-2-yl)methyl)ethanamine (PTEBIA). The tetrairon complex 1a features four μ-oxido bridges, while in dinuclear 1b, the sulfur moiety of the ligand occupies one of the six coordination sites of each Fe(III) ion with a long Fe-S distance of 2.814(6) A. In 2, two Fe(III) centers are bridged by one oxido and two formate units, the latter likely formed by methanol oxidati…
CCDC 1874713: Experimental Crystal Structure Determination
Related Article: Biswanath Das, Afnan Al-Hunaiti, Brenda N. S��nchez-Egu��a, Erica Zeglio, Serhiy Demeshko, Sebastian Dechert, Steffen Braunger, Matti Haukka, Timo Repo, Ivan Castillo, Ebbe Nordlander|2019|Frontiers in Chemistry|7|97|doi:10.3389/fchem.2019.00097
CCDC 1874714: Experimental Crystal Structure Determination
Related Article: Biswanath Das, Afnan Al-Hunaiti, Brenda N. S��nchez-Egu��a, Erica Zeglio, Serhiy Demeshko, Sebastian Dechert, Steffen Braunger, Matti Haukka, Timo Repo, Ivan Castillo, Ebbe Nordlander|2019|Frontiers in Chemistry|7|97|doi:10.3389/fchem.2019.00097
CCDC 1403038: Experimental Crystal Structure Determination
Related Article: Biswanath Das, Afnan Al-Hunaiti, Matti Haukka, Serhiy Demeshko, Steffen Meyer, Albert A. Shteinman, Franc Meyer, Timo Repo, Ebbe Nordlander|2015|Eur.J.Inorg.Chem.||3590|doi:10.1002/ejic.201500576
CCDC 1874712: Experimental Crystal Structure Determination
Related Article: Biswanath Das, Afnan Al-Hunaiti, Brenda N. S��nchez-Egu��a, Erica Zeglio, Serhiy Demeshko, Sebastian Dechert, Steffen Braunger, Matti Haukka, Timo Repo, Ivan Castillo, Ebbe Nordlander|2019|Frontiers in Chemistry|7|97|doi:10.3389/fchem.2019.00097