0000000000048312
AUTHOR
Jose Gomez-dans
Replacing radiative transfer models by surrogate approximations through machine learning
Physically-based radiative transfer models (RTMs) help in understanding the processes occurring on the Earth's surface and their interactions with vegetation and atmosphere. However, advanced RTMs can take a long computational time, which makes them unfeasible in many real applications. To overcome this problem, it has been proposed to substitute RTMs through so-called emulators. Emulators are statistical models that approximate the functioning of RTMs. They are advantageous in real practice because of the computational efficiency and excellent accuracy and flexibility for extrapolation. We here present an ‘Emulator toolbox’ that enables analyzing three multi-output machine learning regress…
A Survey on Gaussian Processes for Earth-Observation Data Analysis: A Comprehensive Investigation
Gaussian processes (GPs) have experienced tremendous success in biogeophysical parameter retrieval in the last few years. GPs constitute a solid Bayesian framework to consistently formulate many function approximation problems. This article reviews the main theoretical GP developments in the field, considering new algorithms that respect signal and noise characteristics, extract knowledge via automatic relevance kernels to yield feature rankings automatically, and allow applicability of associated uncertainty intervals to transport GP models in space and time that can be used to uncover causal relations between variables and can encode physically meaningful prior knowledge via radiative tra…
An Emulator Toolbox to Approximate Radiative Transfer Models with Statistical Learning
Physically-based radiative transfer models (RTMs) help in understanding the processes occurring on the Earth’s surface and their interactions with vegetation and atmosphere. When it comes to studying vegetation properties, RTMs allows us to study light interception by plant canopies and are used in the retrieval of biophysical variables through model inversion. However, advanced RTMs can take a long computational time, which makes them unfeasible in many real applications. To overcome this problem, it has been proposed to substitute RTMs through so-called emulators. Emulators are statistical models that approximate the functioning of RTMs. Emulators are advantageous in real practice because…