0000000000048533
AUTHOR
Gabor Benkö
Interligand Electron Transfer Determines Triplet Excited State Electron Injection in RuN3−Sensitized TiO2 Films
Electron injection from the transition metal complex Ru(dcbpy)(2)(NCS)(2) (dcbpy = 2,2'-bipyridine-4,4'-dicarboxylate) into a titanium dioxide nanoparticle film occurs along two pathways. The dominating part of the electron injection proceeds from the initially excited singlet state of the sensitizer into the conduction band of the semiconductor on the sub-hundred-femtosecond time scale. The slower part of the injection occurs from the thermalized triplet excited state on the picosecond time scale in a nonexponential fashion, as was shown in a previous study (Benko, G.; et al. J. Am. Chem. Soc. 2002, 124, 489). Here we show that the slower channel of injection is the result of the excited s…
Electron Transfer from the Singlet and Triplet Excited States of Ru(dcbpy)2(NCS)2into Nanocrystalline TiO2Thin Films
Time-resolved absorption spectroscopy was used to study the femtosecond and picosecond time scale electron injection from the excited singlet and triplet states of Ru(dcbpY)(2)(NCS)(2) (RuN3) into titanium dioxide (TiO2) nanocrystalline particle film in acetonitrile. The fastest resolved time constant of similar to30 fs was shown to reflect a sum of two parallel ultrafast processes, nonergodic electron transfer (ET) from the initially excited singlet state of RuN3 to the conduction band of TiO2 and intersystem crossing (ISC). The branching ratio of 1.5 between the two competing processes gives rate constants of 1/50 fs(-1) for ET and 1/75 fs(-1) for ISC. Following the ultrafast processes, a…
Photoinduced ultrafast dynamics of Ru(dcbpy)2(NCS)2-sensitized nanocrystalline TiO2 films:The influence of sample preparation and experimental conditions
In most of the previous ultrafast electron injection studies of Ru(dcbpy)2(NCS)2-sensitized nanocrystalline TiO2 films, experimental conditions and sample preparation have been different from study to study and no studies of how the differences affect the observed dynamics have been reported. In the present paper, we have investigated the influence of such modifications. Pump photon density, environment of the sensitized film (solvent and air), and parameters of the film preparation (crystallinity and quality of the film) were varied in a systematic way and the obtained dynamics were compared to that of a well-defined reference sample: Ru(dcbpy)2(NCS)2−TiO2 in acetonitrile. In some cases, …
Photoinduced ultrafast dye-to-semiconductor electron injection from nonthermalized and thermalized donor states.
Electron injection from the transition metal complex Ru(dcbpy)(2)(NCS)(2) (dcbpy = 4,4'-dicarboxy-2,2'-bipyridine) into a titanium dioxide nanocrystalline film occurs on the femto- and picosecond time scales. Here we show that the dominating part of the electron transfer proceeds extremely rapidly from the initially populated, vibronically nonthermalized, singlet excited state, prior to electronic and nuclear relaxation of the molecule. The results are especially relevant to the understanding and design of molecular-based photovoltaic devices and artificial photosynthetic assemblies.