0000000000049174
AUTHOR
J. A. Sheikh
Solution of the Skyrme–Hartree–Fock–Bogolyubov equations in the Cartesian deformed harmonic-oscillator basis.
We describe the new version (v2.38j) of the code hfodd which solves the nuclear SkyrmeHartree-Fock or Skyrme-Hartree-Fock-Bogolyubov problem by using the Cartesian deformed harmonic-oscillator basis. In the new version, we have implemented: (i) projection on good angular momentum (for the Hartree-Fock states), (ii) calculation of the GCM kernels, (iii) calculation of matrix elements of the Yukawa interaction, (iv) the BCS solutions for statedependent pairing gaps, (v) the HFB solutions for broken simplex symmetry, (vi) calculation of Bohr deformation parameters, (vii) constraints on the Schiff moments and scalar multipole moments, (viii) the D T transformations and rotations of wave functio…
Isospin-invariant Skyrme energy-density-functional approach with axial symmetry
We develop the isospin-invariant Skyrme-EDF method by considering local densities in all possible isospin channels and proton-neutron (p-n) mixing terms as mandated by the isospin symmetry. The EDF employed has the most general form that depends quadratically on the isoscalar and isovector densities. We test and benchmark the resulting p-n EDF approach, and study the general properties of the new scheme by means of the cranking in the isospin space. We extend the existing axial DFT solver HFBTHO to the case of isospin-invariant EDF approach with all possible p-n mixing terms. Explicit expressions have been derived for all the densities and potentials that appear in the isospin representatio…
Quadrupole collective inertia in nuclear fission: Cranking approximation
Collective mass tensor derived from the cranking approximation to the adiabatic time-dependent Hartree-Fock-Bogoliubov (ATDHFB) approach is compared with that obtained in the Gaussian Overlap Approximation (GOA) to the generator coordinate method. Illustrative calculations are carried out for one-dimensional quadrupole fission pathways in 256Fm. It is shown that the collective mass exhibits strong variations with the quadrupole collective coordinate. These variations are related to the changes in the intrinsic shell structure. The differences between collective inertia obtained in cranking and perturbative cranking approximations to ATDHFB, and within GOA, are discussed.
Spontaneous fission lifetimes from the minimization of self-consistent collective action
The spontaneous fission lifetime of 264Fm has been studied within nuclear density functional theory by minimizing the collective action integral for fission in a two-dimensional quadrupole collective space representing elongation and triaxiality. The collective potential and inertia tensor are obtained self-consistently using the Skyrme energy density functional and density-dependent pairing interaction. The resulting spontaneous fission lifetimes are compared with the static result obtained with the minimum-energy pathway. We show that fission pathways strongly depend on assumptions underlying collective inertia. With the non-perturbative mass parameters, the dynamic fission pathway become…
Pairing-induced speedup of nuclear spontaneous fission
Collective inertia is strongly influenced at the level crossing at which quantum system changes diabatically its microscopic configuration. Pairing correlations tend to make the large-amplitude nuclear collective motion more adiabatic by reducing the effect of those configuration changes. Competition between pairing and level crossing is thus expected to have a profound impact on spontaneous fission lifetimes. To elucidate the role of nucleonic pairing on spontaneous fission, we study the dynamic fission trajectories of $^{264}$Fm and $^{240}$Pu using the state-of-the-art self-consistent framework. We employ the superfluid nuclear density functional theory with the Skyrme energy density fun…