0000000000049208

AUTHOR

Virginie Comte

showing 26 related works from this author

Photochemical Synthesis and Reactivity of New Chloro-Bridged Complexes with Tungstenocene (η5-C5H5)(η5-C5H4PPh2)WClX (X = H, Cl) and Tetracarbonylmet…

1999

Chloro-bridged bimetallic complexes (η5-C5H5)[η5-C5H4PPh2M′(CO)4]W(μ-Cl)X [X = Cl (3), × = H (4); M′ = Cr, W] were prepared by photochemical irradiation of (η5-C5H5)[η5-C5H4PPh2M′(CO)5]WClX [X = Cl (1), × = H (2); M′ = Cr, W]. The reactivity of the chloro-bridged complexes towards Lewis bases was studied; by exposure to CO or phosphanes, a facile cleavage of the chloro bridge accompanied by regio- and stereospecific coordination at M′ occurs. The X-ray structure of complex 3 (M′ = W) is reported.

Inorganic ChemistryStereospecificityChemistryReactivity (chemistry)Lewis acids and basesCleavage (embryo)PhotochemistryBimetallic stripEuropean Journal of Inorganic Chemistry
researchProduct

A Straightforward Route to Homoallyl-Homocrotylamines Promoted by a Titanium Complex

2012

I�-Allyltitanium complexes, generated in situ from 1,3-dienes and Cp2TiH, react with benzotriazole derivatives to give homoallylic amines in good yields. Under similar conditions, triple cascade reactions (allyltitanation followed by cationic 2-aza-Cope rearrangement followed by a second allyltitanation) occur from bis(benzotriazolyl) compounds affording a straightforward route to homoallyl-(E)-homocrotylamines. A theoretical study provides further insight into the factors that govern the selectivity of this sequence of reactions. The titanium-promoted reductive coupling of 1,3-dienes with bis(benzotriazolyl) compounds as substrates led selectively to homoallyl-homocrotylamines through a tr…

chemistry.chemical_compoundBenzotriazoleCascade reactionChemistryOrganic ChemistryCationic polymerizationOrganic chemistryPhysical and Theoretical ChemistrySigmatropic reactionSelectivityCombinatorial chemistryA titaniumEuropean Journal of Organic Chemistry
researchProduct

Synthesis of enol esters catalysed by 'early–late' Ti–Ru complexes

2003

Abstract The titane–ruthenium heterobimetallic compounds ( p -cymene)[(η 5 -C 5 H 5 )(μ-η 5 :η 1 -C 5 H 4 (CH 2 ) m PR 2 )TiCl 2 ]RuCl 2 4 – 6 have been revealed to be quite good catalysts for the addition of formic acid to 1-hexyne and phenylacetylene. These preliminary results led us to synthesize new tetrametallic complexes 10 – 12 via the reaction of the titanocene phosphanes 1 – 3 with the polymer [Ru(CO) 2 (μ-O 2 CH)] n . Their catalytic ability for the enol esters formation has been studied.

chemistry.chemical_classificationFormic acidchemistry.chemical_elementPolymerMedicinal chemistryEnolCatalysisRutheniumInorganic Chemistrychemistry.chemical_compoundchemistryPhenylacetyleneMaterials ChemistryOrganic chemistryPhysical and Theoretical ChemistryInorganica Chimica Acta
researchProduct

ChemInform Abstract: First Titanium-Catalyzed 1,4-Hydrophosphination of 1,3-Dienes.

2010

chemistryPolymer chemistryHydrophosphinationchemistry.chemical_elementGeneral MedicineCatalysisTitaniumChemInform
researchProduct

[TiPHOS(Rh)]+:  A Fortuitous Coordination Mode and an Effective Hydrosilylation Bimetallic Catalyst

2005

The reaction of the titanocene diphosphine {(η5-C5H5)[η5-C5Me3-1,2-(PPh2)2]TiCl2} (TiPHOS; 1) with [Rh(COD)2](OTf) led to the new early−late heterobimetallic complex [(TiPHOS)Rh(COD)](OTf) (2), who...

Inorganic Chemistrychemistry.chemical_compoundchemistryHydrosilylationOrganic ChemistryPolymer chemistryOrganic chemistryPhysical and Theoretical ChemistryBimetallic stripCatalysisOrganometallics
researchProduct

Reactivity of the ansa-Bridged Metallocene Dichlorides [X(η5-C5H4)2]MCl2 (X = SiMe2, CMe2; M = Mo, W) toward Metallophosphide Anions [PPh2M‘(CO)x]- (…

1997

Two kinds of ansa derivatives, [SiMe2(η5-C5H4)2]MCl2 and [CMe2(η5-C5H4)2]MCl2 (M = Mo, W), are reacted with metallophosphide anions [PPh2M‘(CO)x]- (M‘ = Cr, Mo, W, x = 5; M‘ = Fe, x = 4). The silicon-bridged derivatives give the bimetallic systems [SiMe2(η5-C5H4)(η5-C5H3PPh2M‘(CO)x)]M(H)(Cl), which result from a regioselective substitution at the 3-position on the cyclopentadienyl ligand. In contrast, with the CMe2-bridged compounds, the substitution reaction occurs at the metallic center, giving μ-phosphido bimetallic complexes [CMe2(η5-C5H4)2]M(Cl)(μ-PPh2)M‘(CO)x. The solid-state structure of the bimetallic complex [CMe2(η5-C5H4)2]W(Cl)(μ-PPh2)Fe(CO)4 (7d) is reported.

Substitution reactionChemistryStereochemistryLigandOrganic ChemistryInorganic ChemistryMetalCrystallographychemistry.chemical_compoundCyclopentadienyl complexvisual_artvisual_art.visual_art_mediumNucleophilic substitutionReactivity (chemistry)Physical and Theoretical ChemistryMetalloceneBimetallic stripOrganometallics
researchProduct

ChemInform Abstract: nBuLi-Mediated Hydrophosphination: A Simple Route to Valuable Organophosphorus Compounds.

2010

A straightforward synthesis of homoallyl- and allylphosphanes has been developed using nBuLi-mediated hydrophosphination of conjugated dienes. In all the cases the phosphorus atom of the reacting phosphane attacked the sterically less demanding side of the diene exclusively. In addition, high regioselectivities towards 1,2- or 1,4-addition products were observed depending on the nature of the dienes. This hydrophosphination reaction was extended to a variety of substrates such as styrene derivatives, alkynes and 1,3,5-cycloheptatriene. The structures of three hydrophosphination products were confirmed by X-ray diffraction studies.

Steric effectschemistry.chemical_compoundDienechemistryPhosphorus atomHydrophosphinationGeneral MedicineConjugated systemCombinatorial chemistryStyreneChemInform
researchProduct

Multinuclear Cytotoxic Metallodrugs: Physicochemical Characterization and Biological Properties of Novel Heteronuclear Gold-Titanium Complexes

2011

An unprecedented series of titanocene-gold bi- and trimetallic complexes of the general formula [[(η(5)-C(5)H(5))(μ-η(5):κ(1)-C(5)H(4)(CH(2))(n)PPh(2))TiCl(2)](m)AuCl(x)](q+) (n = 0, 2, or 4; m = 1, x = 1, q = 0 or m = 2, x = 0, q = 1) have been prepared and characterized spectroscopically. The luminescence spectroscopy and photophysics of one of the compounds, [[(η(5)-C(5)H(5))(μ-η(5):κ(1)-C(5)H(4)PPh(2))TiCl(2)](2)Au]PF(6), have been investigated in 2MeTHF solution and in the solid state at 77 and 298 K. Evidence for interfragment interactions based on the comparison of electronic band positions and emission lifetimes, namely, triplet energy transfer (ET) from the Au- to the Ti-containing…

Models MolecularSpectrometry Mass Electrospray IonizationLuminescenceMagnetic Resonance SpectroscopyTransfer Excited-StatesCell SurvivalStereochemistryAntineoplastic AgentsCharge-TransferUnsaturated-HydrocarbonsCrystallography X-RayElectronic-StructuresInorganic ChemistryStructure-Activity Relationshipchemistry.chemical_compoundCell Line TumorOrganometallic CompoundsHumansPhysical and Theoretical ChemistrySpectroscopyGroup 2 organometallic chemistryTitaniumArene-Ruthenium ComplexesX-rayTitanocene dichlorideNuclear magnetic resonance spectroscopyChromophoreTitanocene DichlorideCrystallographychemistryHeteronuclear moleculeAnticancer AgentsSpectrophotometry UltravioletGoldLuminescenceGold(Iii) CompoundsPhotophysical Properties
researchProduct

A Route toward (Aminomethyl)cyclopentadienide Ligands and Their Group 4 Metal Complexes

2018

International audience

Zirconium010405 organic chemistryChemistrychemistry.chemical_element010402 general chemistry01 natural sciences3. Good health0104 chemical sciencesInorganic ChemistryMetalGroup (periodic table)visual_artPolymer chemistryvisual_art.visual_art_medium[CHIM.COOR]Chemical Sciences/Coordination chemistryComputingMilieux_MISCELLANEOUSTitanium
researchProduct

Hydrogen: a good partner for rhodium-catalyzed hydrosilylation

2014

The influence of hydrogen pressure on the hydrosilylation of ketones catalyzed by [((S)-SYNPHOS)Rh(nbd)]OTf has been studied. We have notably demonstrated that hydrogen significantly affected the outcome of the reaction while not being consumed as stoichiometric reducing agent. In THF, diethyl ether or toluene, the hydrogen pressure exceedingly accelerated the hydrosilylation reaction and preserved or even improved the enantioselectivity of the process. In CH2Cl2, the rhodium catalyst also showed generally higher catalytic activity under hydrogen pressure. Most serendipitously, several ketones were found to give products of absolute opposite configuration upon performing the hydrosilylation…

HydrogenHydrosilylationReducing agentEnantioselective synthesischemistry.chemical_elementGeneral ChemistryMedicinal chemistryRhodiumCatalysisInorganic Chemistrychemistry.chemical_compoundchemistryDiethyl etherStoichiometryApplied Organometallic Chemistry
researchProduct

First titanium-catalyzed 1,4-hydrophosphination of 1,3-dienes

2010

International audience

010405 organic chemistryOrganic Chemistrychemistry.chemical_elementHomogeneous catalysisGeneral Chemistry[CHIM.CATA]Chemical Sciences/Catalysis010402 general chemistry01 natural scienceshomogeneous catalysisCatalysis0104 chemical sciencesCatalysis[ CHIM.CATA ] Chemical Sciences/CatalysisphosphineschemistryhydrophosphinationdienesOrganic chemistryHydrophosphinationtitaniumComputingMilieux_MISCELLANEOUSTitanium
researchProduct

ChemInform Abstract: A Straightforward Route to Homoallyl-Homocrotylamines Promoted by a Titanium Complex.

2013

This publication also contains theoretical studies and calculations concerning the reaction.

ChemistryGeneral MedicineCombinatorial chemistryA titaniumChemInform
researchProduct

nBuLi-Mediated hydrophosphination: a simple route to valuable organophosphorus compounds

2010

A straightforward synthesis of homoallyl- and allylphosphanes has been developed using nBuLi-mediated hydrophosphination of conjugated dienes. In all the cases the phosphorus atom of the reacting phosphane attacked the sterically less demanding side of the diene exclusively. In addition, high regioselectivities towards 1,2- or 1,4-addition products were observed depending on the nature of the dienes. This hydrophosphination reaction was extended to a variety of substrates such as styrene derivatives, alkynes and 1,3,5-cycloheptatriene. The structures of three hydrophosphination products were confirmed by X-ray diffraction studies.

Steric effectsligand designDieneAlkyneConjugated system010402 general chemistryalkynes01 natural sciencesChemical synthesisStyrenechemistry.chemical_compound[ CHIM.ORGA ] Chemical Sciences/Organic chemistryhydrophosphinationOrganic chemistryPhysical and Theoretical ChemistryphosphorusComputingMilieux_MISCELLANEOUSchemistry.chemical_classificationalkenes010405 organic chemistryAlkene[CHIM.ORGA]Chemical Sciences/Organic chemistryOrganic ChemistryRegioselectivity0104 chemical scienceschemistry
researchProduct

Regio- and Stereochemical Aspects of the Substitution Reaction between the Molybdenocene and Tungstenocene Dichlorides (η5-C5H4-R)2MCl2 (R = CMe3, Si…

2001

Inorganic ChemistrySubstitution reactionStereochemistryChemistryOrganic ChemistryPhysical and Theoretical ChemistryOrganometallics
researchProduct

Cover Feature: A Route toward (Aminomethyl)cyclopentadienide Ligands and Their Group 4 Metal Complexes (Eur. J. Inorg. Chem. 34/2018)

2018

Inorganic ChemistryMetalFeature (computer vision)ChemistryStereochemistryGroup (periodic table)visual_artvisual_art.visual_art_mediumCover (algebra)European Journal of Inorganic Chemistry
researchProduct

Development of Bimetallic Titanocene−Ruthenium−Arene Complexes As Anticancer Agents: Relationships between Structural and Biological Properties

2010

A series of bimetallic titanium-ruthenium complexes of general formula [(η(5)-C(5)H(5))(μ-η(5):κ(1)-C(5)H(4)(CR(2))(n)PR'R'')TiCl(2)](η(6)-p-cymene)RuCl(2) (n = 0, 1, 2 or 4; R = H or Me; R' = H, Ph, or Cy; R'' = Ph or Cy) have been synthesized, including two novel compounds as well as two cationic derivatives of formula [(η(5)-C(5)H(5))(μ-η(5):κ(1)-C(5)H(4)(CH(2))(n)PPh(2))TiCl(2)] [(η(6)-p-cymene)RuCl](BF(4)) (n = 0 or 2). The solid state structure of two of these compounds was also established by X-ray crystallography. The complexes showed a cytotoxic effect on human ovarian cancer cells and were markedly more active than their Ti or Ru monometallic analogues titanocene dichloride and RA…

Models MolecularStereochemistrychemistry.chemical_elementAntineoplastic AgentsCrystal structureCrystallography X-RayRutheniumCathepsin BMetalStructure-Activity Relationshipchemistry.chemical_compoundCoordination ComplexesCell Line TumorDrug DiscoveryAnimalsHumansBimetallic stripAlkylTitaniumchemistry.chemical_classificationCationic polymerizationTitanocene dichlorideRutheniumEnzymechemistryDrug Resistance Neoplasmvisual_artvisual_art.visual_art_mediumMolecular MedicineCattleDrug Screening Assays AntitumorProtein BindingJournal of Medicinal Chemistry
researchProduct

CCDC 1825467: Experimental Crystal Structure Determination

2018

Related Article: Quentin Bonnin, Sook-Yen Wong, Cedric Balan, Virginie Comte, Raluca Malacea, Marie-Jose Penouilh, Philippe Richard, Gerald Kehr, Adrien T. Normand, Gerhard Erker, Pierre Le Gendre|2018|Eur.J.Inorg.Chem.|2018|3813|doi:10.1002/ejic.201800636

Space GroupCrystallographyCrystal SystemCrystal Structuretrichloro-((2266-tetramethylpiperidinylmethyl)-cyclopentadienyl)-titaniumCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1825466: Experimental Crystal Structure Determination

2018

Related Article: Quentin Bonnin, Sook-Yen Wong, Cedric Balan, Virginie Comte, Raluca Malacea, Marie-Jose Penouilh, Philippe Richard, Gerald Kehr, Adrien T. Normand, Gerhard Erker, Pierre Le Gendre|2018|Eur.J.Inorg.Chem.|2018|3813|doi:10.1002/ejic.201800636

Space GroupCrystallographydichloro-bis((dibenzylamino)-cyclopentadienyl)-zirconiumCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1825460: Experimental Crystal Structure Determination

2018

Related Article: Quentin Bonnin, Sook-Yen Wong, Cedric Balan, Virginie Comte, Raluca Malacea, Marie-Jose Penouilh, Philippe Richard, Gerald Kehr, Adrien T. Normand, Gerhard Erker, Pierre Le Gendre|2018|Eur.J.Inorg.Chem.|2018|3813|doi:10.1002/ejic.201800636

dichloro-cyclopentadienyl-((2266-tetramethylpiperidinylmethyl)-cyclopentadienyl)-titaniumSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1825463: Experimental Crystal Structure Determination

2018

Related Article: Quentin Bonnin, Sook-Yen Wong, Cedric Balan, Virginie Comte, Raluca Malacea, Marie-Jose Penouilh, Philippe Richard, Gerald Kehr, Adrien T. Normand, Gerhard Erker, Pierre Le Gendre|2018|Eur.J.Inorg.Chem.|2018|3813|doi:10.1002/ejic.201800636

Space GroupCrystallographydichloro-cyclopentadienyl-((di-isopropylammoniomethyl)-cyclopentadienyl)-titanium chlorideCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1825459: Experimental Crystal Structure Determination

2018

Related Article: Quentin Bonnin, Sook-Yen Wong, Cedric Balan, Virginie Comte, Raluca Malacea, Marie-Jose Penouilh, Philippe Richard, Gerald Kehr, Adrien T. Normand, Gerhard Erker, Pierre Le Gendre|2018|Eur.J.Inorg.Chem.|2018|3813|doi:10.1002/ejic.201800636

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersdichloro-((dibenzylaminomethyl)-cyclopentadienyl)-cyclopentadienyl-titaniumExperimental 3D Coordinates
researchProduct

CCDC 1825465: Experimental Crystal Structure Determination

2018

Related Article: Quentin Bonnin, Sook-Yen Wong, Cedric Balan, Virginie Comte, Raluca Malacea, Marie-Jose Penouilh, Philippe Richard, Gerald Kehr, Adrien T. Normand, Gerhard Erker, Pierre Le Gendre|2018|Eur.J.Inorg.Chem.|2018|3813|doi:10.1002/ejic.201800636

dichloro-bis((dibenzylaminomethyl)-cyclopentadienyl)-titaniumSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1825462: Experimental Crystal Structure Determination

2018

Related Article: Quentin Bonnin, Sook-Yen Wong, Cedric Balan, Virginie Comte, Raluca Malacea, Marie-Jose Penouilh, Philippe Richard, Gerald Kehr, Adrien T. Normand, Gerhard Erker, Pierre Le Gendre|2018|Eur.J.Inorg.Chem.|2018|3813|doi:10.1002/ejic.201800636

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersdichloro-cyclopentadienyl-((pyrrolidinium-1-ylmethyl)-cyclopentadienyl)-titanium chloride chloroform solvateExperimental 3D Coordinates
researchProduct

CCDC 1825461: Experimental Crystal Structure Determination

2018

Related Article: Quentin Bonnin, Sook-Yen Wong, Cedric Balan, Virginie Comte, Raluca Malacea, Marie-Jose Penouilh, Philippe Richard, Gerald Kehr, Adrien T. Normand, Gerhard Erker, Pierre Le Gendre|2018|Eur.J.Inorg.Chem.|2018|3813|doi:10.1002/ejic.201800636

dichloro-cyclopentadienyl-((2266-tetramethylpiperidinylmethyl)-cyclopentadienyl)-zirconiumSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1825458: Experimental Crystal Structure Determination

2018

Related Article: Quentin Bonnin, Sook-Yen Wong, Cedric Balan, Virginie Comte, Raluca Malacea, Marie-Jose Penouilh, Philippe Richard, Gerald Kehr, Adrien T. Normand, Gerhard Erker, Pierre Le Gendre|2018|Eur.J.Inorg.Chem.|2018|3813|doi:10.1002/ejic.201800636

dichloro-((di-isopropylaminomethyl)-cyclopentadienyl)-(pentamethyl-cyclopentadienyl)-titaniumSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1825464: Experimental Crystal Structure Determination

2018

Related Article: Quentin Bonnin, Sook-Yen Wong, Cedric Balan, Virginie Comte, Raluca Malacea, Marie-Jose Penouilh, Philippe Richard, Gerald Kehr, Adrien T. Normand, Gerhard Erker, Pierre Le Gendre|2018|Eur.J.Inorg.Chem.|2018|3813|doi:10.1002/ejic.201800636

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinatesdichloro-cyclopentadienyl-((2266-tetramethylpiperidiniomethyl)-cyclopentadienyl)-titanium chloride
researchProduct