0000000000049437
AUTHOR
Timo Enqvist
Hunt for θ13with LENA
In a hunt for by far missing neutrino mixing angle ?13 the accelerator experiments have recently indicated non-zero value and the dedicated reactor neutrino experiments are moving towards the data-taking phase to confirm that. The small effect of ?13 to the neutrino oscillation probabilities can be also complementarily probed using artificially made source of mono-chromatic neutrinos with low energies originated from electron capture processes. Due to the small energy of neutrino and tiny interaction cross section, and the expected scale of ?13 support the use of large liquid scintillation detector. In this work, the estimated sensitivities for measurement of mixing angle ?13 is presented i…
Underground cosmic-ray experiment EMMA
EMMA (Experiment with MultiMuon Array) is a new approach to study the composition of cosmic rays at the knee region (1 − 10 PeV). The array will measure the multiplicity and lateral distribution of the high-energy muon component of an air shower and its arrival direction on an event-by-event basis. The array operates in the Pyh¨asalmi Mine, Finland, at a depth of 75 metres (or 210 m.w.e) corresponding to the cut-off energy of approximately 50 GeV for vertical muons. The data recording with a partial array has started and preliminary results of the first test runs are presented. nonPeerReviewed
The next-generation liquid-scintillator neutrino observatory LENA
We propose the liquid-scintillator detector LENA (Low Energy Neutrino Astronomy) as a next-generation neutrino observatory on the scale of 50 kt. The outstanding successes of the Borexino and KamLAND experiments demonstrate the large potential of liquid-scintillator detectors in low-energy neutrino physics. LENA's physics objectives comprise the observation of astrophysical and terrestrial neutrino sources as well as the investigation of neutrino oscillations. In the GeV energy range, the search for proton decay and long-baseline neutrino oscillation experiments complement the low-energy program. Based on the considerable expertise present in European and international research groups, the …
Spectroscopy of the proton drip-line nucleus 203Fr
The nucleus ${}^{203}$Fr has been studied through $\ensuremath{\gamma}$-ray and electron spectroscopy, using the recoil-decay tagging technique. A 13/2${}^{+}$ state, with a half-life of 0.37(5) $\ensuremath{\mu}$s, has been observed in ${}^{203}$Fr. Both the $\ensuremath{\alpha}$-decay branch and the internal de-excitation of the 1/2${}^{+}$ isomer in ${}^{203}$Fr have been studied. Furthermore, the corresponding 1/2${}^{+}$ state, with a half-life of 0.31(8) s, has been found in ${}^{199}$At. In addition, transitions feeding the 9/2${}^{\ensuremath{-}}$ ground state of ${}^{203}$Fr have been identified. The observed level pattern suggests that the ground state is still spherical.
Spectroscopy of the proton drip-line nucleus 203Fr
The nucleus 203Fr has been studied through γ -ray and electron spectroscopy, using the recoil-decay tagging technique. A 13/2+ state, with a half-life of 0.37(5) μs, has been observed in 203Fr. Both the α-decay branch and the internal de-excitation of the 1/2+ isomer in 203Fr have been studied. Furthermore, the corresponding 1/2+ state, with a half-life of 0.31(8) s, has been found in 199At. In addition, transitions feeding the 9/2− ground state of 203Fr have been identified. The observed level pattern suggests that the ground state is still spherical. peerReviewed
Advantages of locating LAGUNA in Pyhäsalmi mine
Abstract LAGUNA is the next-generation underground Megaton-scale detector for the search for proton decay, for neutrino astrophysics and for the investigation of neutrino properties. A brief description of the three considered detector technologies is given and the main physics goals presented. While many of the research topics for LAGUNA are not affected by the geographical location of the detector, there are two areas where it is very important: low-energy neutrino measurements and long-baseline neutrino oscillations. Evaluation of the physics arguments in both cases indicates Pyhasalmi mine as the best European site for LAGUNA.
Performance of tracking stations of the underground cosmic-ray detector array EMMA
Abstract The new cosmic-ray experiment EMMA operates at the depth of 75 m (50 GeV cutoff energy for vertical muons; 210 m.w.e.) in the Pyhasalmi mine, Finland. The underground infrastructure consists of a network of eleven stations equipped with multi-layer, position-sensitive detectors. EMMA is designed for cosmic-ray composition studies around the energy range of the knee, i.e., for primary particles with energies between 1 and 10 PeV. In order to yield significant new results EMMA must be able to record data in the full configuration for about three years. The key to the success of the experiment is the performance of its tracking stations. In this paper we describe the layout of EMMA an…
Measuring the14C content in liquid scintillators
We are going to perform a series of measurements where the 14C/12 C ratio will be measured from several liquid scintillator samples with a dedicated setup. The setup is designed with the aim of measuring ratios smaller than 10-18. Measurements take place in two underground laboratories: in the Baksan Neutrino Observatory, Russia and in the Pyhasalmi mine, Finland. In Baksan the measurements started in 2015 and in Pyhasalmi they start in the beginning of 2015. In order to fully understand the operation of the setup and its background contributions a development of simulation packages has also been started. Low-energy neutrino detection with a liquid scintillator requires that the intrinsic 1…
Recoil-decay tagging study of 205Fr
The nucleus 205Fr has been studied through γ -ray and electron spectroscopy using the recoil-decay tagging technique. The resulting level scheme presents a spherical structure built on the 9/2− ground state and a rotational structure on top of a short-lived isomer. The isomer, with a spin and parity of 13/2+ and a half-life of 80(20) ns, de-excites by an M2 transition directly to the 9/2− ground state. Another, longer-lived, isomer, with a half-life of 1.15(4) ms, has also been found and assigned a spin and parity of 1/2+. Transitions populating and de-exciting this isomer have been observed as well. peerReviewed
The mass-hierarchy and CP-violation discovery reach of the LBNO long-baseline neutrino experiment.
The next generation neutrino observatory proposed by the LBNO collaboration will address fundamental questions in particle and astroparticle physics. The experiment consists of a far detector, in its first stage a 20 kt LAr double phase TPC and a magnetised iron calorimeter, situated at 2300 km from CERN and a near detector based on a high-pressure argon gas TPC. The long baseline provides a unique opportunity to study neutrino flavour oscillations over their 1st and 2nd oscillation maxima exploring the $L/E$ behaviour, and distinguishing effects arising from $\delta_{CP}$ and matter. In this paper we have reevaluated the physics potential of this setup for determining the mass hierarchy (M…
Underground cosmic-ray experiment EMMA
A new cosmic-ray experiment is under construction in the Pyhasalmi mine, Finland. It aims to study the chemical composition of cosmic rays at and above the knee region. The array, called EMMA, will cover approximately 150 m2 of detector area at the depth of 85 metres ( ∼ 240 mwe ). It is capable of measuring the multiplicity and the lateral distribution of underground muons, and the arrival direction of the air shower. The full-size array is expected to be ready by the end of 2007. A partial-size array (one third of the full size) is planned to record data already at the first quarter of 2007. The array is also expected to be capable of measuring such high-multiplicity muon bundles as was …
Acoustic detection of neutrinos in bedrock
We propose to utilize bedrock as a medium for acoustic detection of particle showers following interactions of ultra-high energy neutrinos. With the density of rock three-times larger and the speed of sound four-times larger compared to water, the amplitude of the generated bipolar pressure pulse in rock should be larger by an order of magnitude. Our preliminary simulations confirm that prediction. Higher density of rock also guarantees higher interaction rate for neutrinos. A noticeably longer attenuation length in rock reduces signal dissipation. The Pyh\"asalmi mine has a unique infrastructure and rock conditions to test this idea and, if successful, extend it to a full-size experiment.
Can EMMA solve the puzzle of the knee?
Abstract The knee is a change in the slope of the cosmic ray spectrum at approximate energy of 3 PeV. There are multiple competing models for the knee giving conflicting predictions about this change for different masses of the primary particle. Accurate mass measurements of cosmic rays spectra around 3 PeV would be able to exclude some of these models. Cosmic-ray experiment EMMA uses a new method for studying the composition of cosmic rays at the knee area. It is able to determine the multiplicity, the lateral distribution, and the arrival direction of incoming muons produced early in the shower evolution on an event-by-event basis and deduce from these measurements the mass and the energy…
The Design and Sensitivity of JUNO's scintillator radiopurity pre-detector OSIRIS
The European physical journal / C 81(11), 973 (2021). doi:10.1140/epjc/s10052-021-09544-4
Low-energy Neutrino Astronomy in LENA
LENA (Low Energy Neutrino Astronomy) is a proposed next-generation neutrino detector based on 50 kilotons of liquid scintillator. The low detection threshold, good energy resolution and excellent background rejection inherent to the liquid-scintillator detectors make LENA a versatile observatory for low-energy neutrinos from astrophysical and terrestrial sources. In the framework of the European LAGUNA-LBNO design study, LENA is also considered as far detector for a very-long baseline neutrino beam from CERN to Pyhasalmi ¨ (Finland). The present contribution gives an overview LENA’s broad research program, highlighting the unique capabilities of liquid scintillator for the detection of low-…
Background and muon counting rates in underground muon measurements with a plastic scintillator counter based on a wavelength shifting fibre and a multi-pixel avalanche photodiode readout
AbstractIn this short note we present results of background measurements carried out with polystyrene based cast plastic 12.0×12.0×3.0 cm3 size scintillator counter with a wavelength shifting fibre and a multi-pixel Geiger mode avalanche photodiode readout in the Baksan underground laboratory at a depth of 200 metres of water equivalent. The total counting rate of the scintillator counter measured at this depth and at a threshold corresponding to ∼0.37 of a minimum ionizing particle is approximately 1.3 Hz.
High-multiplicity muon events observed with EMMA array
Abstract High-multiplicity data, collected with a segmented scintillator array of the cosmic-ray experiment EMMA (Experiment with Multi-Muon Array), is presented for the first time. The measurements were done at the depth of 75 meters (210 m.w.e.) in the Pyhäsalmi mine in Finland. EMMA uses two types of detectors: drift chambers and plastic scintillation detectors. The presented data were acquired over the period between December, 2015 and April, 2018 using 128-800 plastic scintillator pixels probing the fiducial area of ˜100 m2. The results are being interpreted in terms of CORSIKA simulations. Several events with densities in excess of 10 muons per m2 were observed. At the next stage of t…
Radioactivity control strategy for the JUNO detector
JUNO is a massive liquid scintillator detector with a primary scientific goal of determining the neutrino mass ordering by studying the oscillated anti-neutrino flux coming from two nuclear power plants at 53 km distance. The expected signal anti-neutrino interaction rate is only 60 counts per day, therefore a careful control of the background sources due to radioactivity is critical. In particular, natural radioactivity present in all materials and in the environment represents a serious issue that could impair the sensitivity of the experiment if appropriate countermeasures were not foreseen. In this paper we discuss the background reduction strategies undertaken by the JUNO collaboration…
Cosmic-ray muon flux at Canfranc Underground Laboratory
Residual flux and angular distribution of high-energy cosmic muons have been measured in two underground locations at the Canfranc Underground Laboratory (LSC) using a dedicated Muon Monitor. The instrument consists of three layers of fast scintillation detector modules operating as 352 independent pixels. The monitor has flux-defining area of 1 m${}^{2}$, covers all azimuth angles, and zenith angles up to $80^\circ$. The measured integrated muon flux is $(5.26 \pm 0.21) \times 10^{-3}$ m${}^{-2}$s${}^{-1}$ in the Hall A of the LAB2400 and $(4.29 \pm 0.17) \times 10^{-3}$ m${}^{-2}$s${}^{-1}$ in LAB2500. The angular dependence is consistent with the known profile and rock density of the sur…
Multi-pixel Geiger-mode avalanche photodiode and wavelength shifting fibre readout of plastic scintillator counters of the EMMA underground experiment
The results of a development of a scintillator counter with wavelength shifting (WLS) fibre and a multi-pixel Geiger-mode avalanche photodiode readout are presented. The photodiode has a metal-resistor-semiconductor layered structure and operates in the limited Geiger mode. The scintillator counter has been developed for the EMMA underground cosmic ray experiment.
EMMA – a new underground cosmic-ray experiment
An experiment observing underground muons originating from cosmic-ray air showers is under preparation in the Pyhasalmi mine, Finland. The aim is to cover an area of about 200-300 m(2), and the detector setup is capable of measuring the muon multiplicity and their lateral distribution. The detector is placed at a depth of about 85 m (corresponding about 240 m w.e.), which gives a threshold energy of muons of about 45 GeV. The detection of the multimuon events is motivated by partly unknown composition of the primary cosmic rays in the energy region of 10(15)-10(16) eV, i.e., the knee region. In addition, by measuring only the higher energy muons of the air shower, the lowest energy muons be…
γ-ray and decay spectroscopy of194,195,196At
Excited states of ${}^{195}$At have been studied by means of in-beam $\ensuremath{\gamma}$-ray spectroscopy and the recoil-decay tagging technique. A strongly coupled rotational band feeding the $\ensuremath{\alpha}$-decaying $7/{2}^{\ensuremath{-}}$ state via unobserved transitions was identified. This band is presumably built on the oblate proton ${I}^{\ensuremath{\pi}}=13/{2}^{+}$ state. Confirming earlier measurements, $\ensuremath{\alpha}$ decays from the $1/{2}^{+}$ and $7/{2}^{\ensuremath{-}}$ states were observed. Additionally, an $E3$ branch competing with the $\ensuremath{\alpha}$ decay of the $7/{2}^{\ensuremath{-}}$ state was inferred. Also $\ensuremath{\alpha}$ decays of the od…
Calculation of total muon flux observed by Muon Monitor experiment
An approach to calculate the flux of cosmicgenic muons detected by Muon Monitor experiment in lab LAB2400 of the Underground Laboratory in Canfranc (LSC) is described. The measuring apparatus consists of three layers of SC16 scintillation matrix detectors. The hardware function of the detector assembly was determined using computer simulation. Obtained value of the total muon ux turned out to be equal to (4.35 ± 0.2) × 10−3 m −2 s −1.
Underground multi-muon experiment EMMA
EMMA is a new experiment designed for cosmic- ray composition studies around the knee energy operating at the shallow depth underground in the Pyh¨ asalmi mine, Fin- land. The array has sufficient coverage and resolution to de- termine the multiplicity, the lateral density distribution and the arrival direction of high-energy muons on an event by event basis. Preliminary results on the muon multiplicity ex- tracted using one detector station of the array are presented.
EAS selection in the EMMA underground array
The first measurements of the Experiment with MultiMuon Array (EMMA) have been analyzed for the selection of the Extensive Air Showers (EAS). Test data were recorded with an underground muon tracking station and a satellite station separated laterally by 10 metres. Events with tracks distributed over all of the tracking detector area and even extending over to the satellite station are identified as EAS. The recorded multiplicity spectrum of the events is in general agreement with CORSIKA EAS simulation and demonstrates the array’s capability of EAS detection. peerReviewed
JUNO sensitivity to low energy atmospheric neutrino spectra
Atmospheric neutrinos are one of the most relevant natural neutrino sources that can be exploited to infer properties about cosmic rays and neutrino oscillations. The Jiangmen Underground Neutrino Observatory (JUNO) experiment, a 20 kton liquid scintillator detector with excellent energy resolution is currently under construction in China. JUNO will be able to detect several atmospheric neutrinos per day given the large volume. A study on the JUNO detection and reconstruction capabilities of atmospheric $\nu_e$ and $\nu_\mu$ fluxes is presented in this paper. In this study, a sample of atmospheric neutrino Monte Carlo events has been generated, starting from theoretical models, and then pro…
High-multiplicity neutron events registered by NEMESIS experiment
Neutron-induced interactions contribute to the signal-mimicking background in deep-underground searches for exotic phenomena such as Dark Matter, neutrino-less double beta decay, proton decay, etc. Apart from radioactive decay, the primary source of neutrons underground are high-energy muons from cosmic showers. While the maximum number of fission neutrons is around six and energies around one MeV, muon-induced interactions may generate hundreds of neutrons, also with high energies. Furthermore, these processes are not yet reproduced in numerical simulations with sufficient reliability. The main goal of the NEMESIS experiment is to improve our knowledge and understanding of cosmic muon-indu…
Neutrino Physics with JUNO
The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy as a primary physics goal. It is also capable of observing neutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, solar neutrinos, as well as exotic searches such as nucleon decays, dark matter, sterile neutrinos, etc. We present the physics motivations and the anticipated performance of the JUNO detector for various proposed measurements. By detecting reactor antineutrinos from two power plan…
Neutrino Flavor Sensitivity of Large Liquid Scintillator Detectors
Abstract Scintillator detectors are known for their good light yield, energy resolution, timing characteristics and pulse shape discrimination capabilities. These features make the next-generation liquid scintillation detector LENA[1] (Low Energy Neutrino Astronomy) the optimal choice for a wide range of astro-particle topics including supernova-, solar-, and geo neutrinos. In addition to the excellent calorimetric and timing properties, scintillartor detectors (LSDs) are also capable of topology reconstruction sufficient to discriminate with adequate efficiency between electron and muon neutrino induced charge current events and neutral current events in the GeV energy range. This feature …
Gamma-ray and decay spectroscopy of 194,195,196At
Excited states of 195At have been studied by means of in-beam γ -ray spectroscopy and the recoil-decay tagging technique. A strongly coupled rotational band feeding the α-decaying 7/2− state via unobserved transitions was identified. This band is presumably built on the oblate proton I π = 13/2+ state. Confirming earlier measurements, α decays from the 1/2+ and 7/2− states were observed. Additionally, an E3 branch competing with the α decay of the 7/2− state was inferred. Also α decays of the odd-odd isotopes 194,196At were examined. peerReviewed
New NEMESIS Results
Funding Information: This work has been supported in part by the EU INTERREG for the Baltic Sea programme within the BSUIN project, and by the Polish Ministry of Science and Higher Education (Grant no. Funding Information: This work has been supported in part by the EU INTERREG for the Baltic Sea programme within the BSUIN project, and by the Polish Ministry of Science and Higher Education (Grant no. 3988/INTERREG BSR/2018/2). Publisher Copyright: © Copyright owned by the author(s) under the terms of the Creative Commons. Preliminary results from a 349-day run (live time) with a 565 kg Pb target and a 166-day background measurement are presented. Three minor anomalies were detected in muon-…
Underground multi-muon experiment EMMA
EMMA is a new experiment designed for cosmic-ray composition studies around the knee energy operating at the shallow depth underground in the Pyhäsalmi mine, Finland. The array has sufficient coverage and resolution to determine the multiplicity, the lateral density distribution and the arrival direction of high-energy muons on an event by event basis. Preliminary results on the muon multiplicity extracted using one detector station of the array are presented. peerReviewed
Large underground, liquid based detectors for astro-particle physics in Europe: scientific case and prospects
This document reports on a series of experimental and theoretical studies conducted to assess the astro-particle physics potential of three future large-scale particle detectors proposed in Europe as next generation underground observatories. The proposed apparatus employ three different and, to some extent, complementary detection techniques: GLACIER (liquid Argon TPC), LENA (liquid scintillator) and MEMPHYS (\WC), based on the use of large mass of liquids as active detection media. The results of these studies are presented along with a critical discussion of the performance attainable by the three proposed approaches coupled to existing or planned underground laboratories, in relation to…
Measurement of the 2+→0+ ground-state transition in the β decay of F20
We report the first detection of the second-forbidden, nonunique, 2+→0+, ground-state transition in the β decay of F20. A low-energy, mass-separated F+20 beam produced at the IGISOL facility in Jyvaskyla, Finland, was implanted in a thin carbon foil and the β spectrum measured using a magnetic transporter and a plastic-scintillator detector. The β-decay branching ratio inferred from the measurement is bβ=[0.41±0.08(stat)±0.07(sys)]×10-5 corresponding to logft=10.89(11), making this one of the strongest second-forbidden, nonunique β transitions ever measured. The experimental result is supported by shell-model calculations and has significant implications for the final evolution of stars tha…
Muon multiplicities measured using an underground cosmic-ray array
EMMA (Experiment with Multi-Muon Array) is an underground detector array designed for cosmic-ray composition studies around the knee energy (or similar to 1 - 10 PeV). It operates at the shallow depth in the Pyhasalmi mine, Finland. The array consists of eleven independent detector stations similar to 15 m(2) each. Currently seven stations are connected to the DAQ and the rest will be connected within the next few months. EMMA will determine the multiplicity, the lateral density distribution and the arrival direction of high-energy muons event by event. The preliminary estimates concerning its performance together with an example of measured muon multiplicities are presented.
Potential for a precision measurement of solar pp neutrinos in the Serappis experiment
The European physical journal / C 82(9), 779 (2022). doi:10.1140/epjc/s10052-022-10725-y