0000000000049770

AUTHOR

Jean-pierre Korb

Surface Relaxivity of Cement Hydrates

Numerous aspects of the physical chemistry of colloidal systems are conditioned by the solid–liquid interface, and this is also the case for hydrated cement systems. Estimating the surface area is thus essential for studying the kinetics of cement hydration and admixture adsorption. Proton nuclear magnetic resonance (NMR) relaxation techniques have already proven useful for this objective, but, for hydrating cements at early ages, it is necessary to know the surface relaxivities of all of the individual phases present to correctly interpret the relaxation data. This paper reports the results of a comparison of NMR relaxometry and Brunauer–Emmett–Teller gas adsorption measurements on various…

research product

Evaluation of the surface affinity of water in three biochars using fast field cycling NMR relaxometry

Many soil functions depend on the interaction of water with soil. The affinity of water for soils can be altered by applying soil amendments like stone meal, manure, or biochar (a carbonaceous material obtained by pyrolysis of biomasses). In fact, the addition of hydrophobic biochar to soil may increase soil repellency, reduce water-adsorbing capacity, inhibit microbial activity, alter soil filter, buffer, storage, and transformation functions. For this reason, it is of paramount importance to monitor water affinity for biochar surface (also referred to as ‘wettability’) in order to better address its applications in soil systems. In this study, we propose the use of fast field cycling NMR …

research product