A group invariant Bishop-Phelps theorem
We show that for any Banach space and any compact topological group G ⊂ L ( X ) G\subset L(X) such that the norm of X X is G G -invariant, the set of norm attaining G G -invariant functionals on X X is dense in the set of all G G -invariant functionals on X X , where a mapping f f is called G G -invariant if for every x ∈ X x\in X and every g ∈ G g\in G , f ( g ( x ) ) = f ( x ) f\big (g(x)\big )=f(x) . In contrast, we show also that the analog of Bollobás result does not hold in general. A version of Bollobás and James’ theorems is also presented.
An asymptotic holomorphic boundary problem on arbitrary open sets in Riemann surfaces
Abstract We show that if U is an arbitrary open subset of a Riemann surface and φ an arbitrary continuous function on the boundary ∂ U , then there exists a holomorphic function φ ˜ on U such that, for every p ∈ ∂ U , φ ˜ ( x ) → φ ( p ) , as x → p outside a set of density 0 at p relative to U . These “solutions to a boundary problem” are not unique. In fact they can be required to have interpolating properties and also to assume all complex values near every boundary point. Our result is new even for the unit disc.
Algebras of frequently hypercyclic vectors
We show that the multiples of the backward shift operator on the spaces $\ell_{p}$, $1\leq p<\infty$, or $c_{0}$, when endowed with coordinatewise multiplication, do not possess frequently hypercyclic algebras. More generally, we characterize the existence of algebras of $\mathcal{A}$-hypercyclic vectors for these operators. We also show that the differentiation operator on the space of entire functions, when endowed with the Hadamard product, does not possess frequently hypercyclic algebras. On the other hand, we show that for any frequently hypercyclic operator $T$ on any Banach space, $FHC(T)$ is algebrable for a suitable product, and in some cases it is even strongly algebrable.
Algebrability of the set of hypercyclic vectors for backward shift operators
Abstract We study the existence of algebras of hypercyclic vectors for weighted backward shifts on Frechet sequence spaces that are algebras when endowed with coordinatewise multiplication or with the Cauchy product. As a particular case, we obtain that the sets of hypercyclic vectors for Rolewicz's and MacLane's operators are algebrable.
Discontinuous, although “highly” differentiable, real functions and algebraic genericity
Abstract We exhibit a class of functions f : R → R which are bounded, continuous on R ∖ Q , left discontinuous on Q , right differentiable on Q , and upper left Dini differentiable on R ∖ Q . Other properties of these functions, such as jump sizes and local extrema, are also discussed. These functions are constructed using probabilistic methods. We also show that the families of functions satisfying similar properties contain large algebraic structures (obtaining lineability, algebrability and coneability).
A Function Algebra Providing New Mergelyan Type Theorems in Several Complex Variables
For compact sets $K\subset \mathbb C^{d}$, we introduce a subalgebra $A_{D}(K)$ of $A(K)$, which allows us to obtain Mergelyan type theorems for products of planar compact sets as well as for graphs of functions.
Analytic structure in fibers of H∞(Bc0)
Abstract Let H ∞ ( B c 0 ) be the algebra of all bounded holomorphic functions on the open unit ball of c 0 and M ( H ∞ ( B c 0 ) ) the spectrum of H ∞ ( B c 0 ) . We prove that for any point z in the closed unit ball of l ∞ there exists an analytic injection of the open ball B l ∞ into the fiber of z in M ( H ∞ ( B c 0 ) ) , which is an isometry from the Gleason metric of B l ∞ to the Gleason metric of M ( H ∞ ( B c 0 ) ) . We also show that, for some Banach spaces X, B l ∞ can be analytically injected into the fiber M z ( H ∞ ( B X ) ) for every point z ∈ B X .
A Note on the Density of Rational Functions in A ∞(Ω)
We present a sufficient condition to ensure the density of the set of rational functions with prescribed poles in the algebra A ∞ (Ω).