0000000000050027

AUTHOR

Panagiotis E. Theodorakis

Pearl-necklace structures of molecular brushes with rigid backbone under poor solvent conditions: A simulation study

Bottle-brush polymers, where flexible side chains containing N=20 to 50 effective monomers are grafted to a rigid backbone, are studied by molecular dynamics simulations, varying the grafting density σ and the solvent quality. Whereas for poor solvents and large enough σ the molecular brush is a cylindrical object, homogeneous in axial direction, for intermediate values of σ an axially inhomogeneous structure of "pearl-necklace" type is formed. The "pearls," however, have a strongly nonspherical ellipsoidal shape, due to the fact that several side chains cluster together in one pearl, qualitatively consistent with predictions of Sheiko et al. [Eur. Phys. J. E 13, 125 (2004)] We analyze the …

research product

Phase Transitions and Relaxation Processes in Macromolecular Systems: The Case of Bottle-brush Polymers

As an example for the interplay of structure, dynamics, and phase behavior of macromolecular systems, this article focuses on the problem of bottle-brush polymers with either rigid or flexible backbones. On a polymer with chain length $N_b$, side-chains with chain length $N$ are endgrafted with grafting density $\sigma$. Due to the multitude of characteristic length scales and the size of these polymers (typically these cylindrical macromolecules contain of the order of 10000 effective monomeric units) understanding of the structure is a challenge for experiment. But due to excessively large relaxation times (particularly under poor solvent conditions) such macromolecules also are a challen…

research product

Computer simulation of bottle-brush polymers with flexible backbone: good solvent versus theta solvent conditions.

By Molecular Dynamics simulation of a coarse-grained bead-spring type model for a cylindrical molecular brush with a backbone chain of $N_b$ effective monomers to which with grafting density $\sigma$ side chains with $N$ effective monomers are tethered, several characteristic length scales are studied for variable solvent quality. Side chain lengths are in the range $5 \le N \le 40$, backbone chain lengths are in the range $50 \le N_b \le 200$, and we perform a comparison to results for the bond fluctuation model on the simple cubic lattice (for which much longer chains are accessible, $N_b \le 1027$, and which corresponds to an athermal, very good, solvent). We obtain linear dimensions of …

research product

Interplay between Chain Collapse and Microphase Separation in Bottle-Brush Polymers with Two Types of Side Chains

Conformations of a bottle-brush polymer with two types (A,B) of grafted side chains are studied by molecular dynamics simulations, using a coarse-grained bead−spring model with side chains of up to...

research product

Structure of bottle-brush brushes under good solvent conditions: a molecular dynamics study.

We report a simulation study for bottle-brush polymers grafted on a rigid backbone. Using a standard coarse-grained bead-spring model extensive molecular dynamics simulations for such macromolecules under good solvent conditions are performed. We consider a broad range of parameters and present numerical results for the monomer density profile, density of the untethered ends of the grafted flexible backbones and the correlation function describing the range that neighboring grafted bottle-brushes are affected by the presence of the others due to the excluded volume interactions. The end beads of the flexible backbones of the grafted bottle-brushes do not access the region close to the rigid…

research product

Microphase separation in linear multiblock copolymers under poor solvent conditions

Molecular dynamics simulations are used to study the phase behavior of linear multiblock copolymers with two types of monomers, A and B, where the length of the polymer blocks $N_{A}$ and $N_{B}$ ($N_{A}=N_{B}=N$), the number of the blocks $n_{A}$ and $n_{B}$ ($n_{A}=n_{B}=n$), and the solvent quality varies. The fraction $f$ of A-type monomers is kept constant and equal to 0.5. Whereas at high enough temperatures these macromolecules form coil structures, where each block A or B forms rather individual clusters, at low enough temperatures A and B monomers from different blocks can join together forming clusters of A or B monomers. The dependence of the formation of these clusters on the va…

research product

Universality in disordered systems: The case of the three-dimensional random-bond Ising model

We study the critical behavior of the $d=3$ Ising model with bond randomness through extensive Monte Carlo simulations and finite-size scaling techniques. Our results indicate that the critical behavior of the random-bond model is governed by the same universality class as the site- and bond-diluted models, clearly distinct from that of the pure model, thus providing a complete set of universality in disordered systems.

research product

Microphase separation in bottlebrush polymers under poor-solvent conditions

Molecular-dynamics simulations are used to study the structure of bottlebrush polymers with rigid backbones, for various grafting densities, side chain lengths, and varying solvent quality. While we confirm different states of the bottlebrush proposed by Sheiko et al. (Eur. Phys. J. E, 13 (2004) 125) we find that the transition between stretched and collapsed brushes occurs in a rather gradual manner. The pearl-necklace structure occurring at intermediate grafting densities and rather low temperatures has a pronounced medium-range order along the backbone.

research product