Enhanced tonic GABAA inhibition in typical absence epilepsy
The cellular mechanisms underlying typical absence seizures, which characterize various idiopathic generalized epilepsies, are not fully understood, but impaired γ-aminobutyric acid (GABA)-ergic inhibition remains an attractive hypothesis. In contrast, we show here that extrasynaptic GABAA receptor–dependent 'tonic' inhibition is increased in thalamocortical neurons from diverse genetic and pharmacological models of absence seizures. Increased tonic inhibition is due to compromised GABA uptake by the GABA transporter GAT-1 in the genetic models tested, and GAT-1 is crucial in governing seizure genesis. Extrasynaptic GABAA receptors are a requirement for seizures in two of the best character…
mGluR control of interneuron output regulates feedforward tonic GABAA inhibition in the visual thalamus
Metabotropic glutamate receptors (mGluRs) play a crucial role in regulation of phasic inhibition within the visual thalamus. Here we demonstrate that mGluR-dependent modulation of interneuron GABA release results in dynamic changes in extrasynaptic GABAA receptor (eGABAAR)-dependent tonic inhibition in thalamocortical (TC) neurons of the rat dorsal lateral geniculate nucleus (dLGN). Application of the group I selective mGluR agonist dihydroxyphenylglycine produces a concentration-dependent enhancement of both IPSC frequency and tonic GABAA current (IGABAtonic) that is due to activation of both mGluR1a and mGluR5 subtypes. In contrast, group II/III mGluR activation decreases both IPSC freque…
Novel modes of rhythmic burst firing at cognitively-relevant frequencies in thalamocortical neurons.
It is now widely accepted that certain types of cognitive functions are intimately related to synchronized neuronal oscillations at both low (alpha/theta) (4-7/8-13 Hz) and high (beta/gamma) (18-35/30-70 Hz) frequencies. The thalamus is a key participant in many of these oscillations, yet the cellular mechanisms by which this participation occurs are poorly understood. Here we describe how, under appropriate conditions, thalamocortical (TC) neurons from different nuclei can exhibit a wide array of largely unrecognised intrinsic oscillatory activities at a range of cognitively-relevant frequencies. For example, both metabotropic glutamate receptor (mGluR) and muscarinic Ach receptor (mAchR) …
The effect of cannabinoid receptor agonist WIN 55,212-2 on anxiety-like behavior and locomotion in a genetic model of absence seizures in the elevated plus-maze.
GAERS and NEC rats were treated with cannabinoid 1/2 receptor agonist WIN 55,212-2 2 mg/kg and tested on the Elevated Plus-Maze
Essential thalamic contribution to slow waves of natural sleep
Slow waves represent one of the prominent EEG signatures of non-rapid eye movement (non-REM) sleep and are thought to play an important role in the cellular and network plasticity that occurs during this behavioral state. These slow waves of natural sleep are currently considered to be exclusively generated by intrinsic and synaptic mechanisms within neocortical territories, although a role for the thalamus in this key physiological rhythm has been suggested but never demonstrated. Combining neuronal ensemble recordings, microdialysis, and optogenetics, here we show that the block of the thalamic output to the neocortex markedly (up to 50%) decreases the frequency of slow waves recorded dur…
Cannabinoid 1/2 Receptor Activation Induces Strain-Dependent Behavioral and Neurochemical Changes in Genetic Absence Epilepsy Rats From Strasbourg and Non-epileptic Control Rats
Childhood absence epilepsy (CAE) is characterized by absence seizures, which are episodes of lack of consciousness accompanied by electrographic spike-wave discharges. About 60% of children and adolescents with absence seizures are affected by major neuropsychological comorbidities, including anxiety. Endocannabinoids and monoamines are likely involved in the pathophysiology of these CAE psychiatric comorbidities. Here, we show that the synthetic cannabinoid receptor type 1/2 (CB1/2R) agonist WIN 55,212-2 (2 mg/kg) has a strain-dependent effect on anxiety-like and motor behavior when assess in the hole board test and cerebral monoaminergic levels in Genetic Absence Epilepsy Rats from Strasb…