0000000000052100
AUTHOR
Peter F. Kolb
Hydrodynamic simulation of elliptic flow
We use a hydrodynamic model to study the space-time evolution transverse to the beam direction in ultrarelativistic heavy-ion collisions with nonzero impact parameters. We focus on the influence of early pressure on the development of radial and elliptic flow. We show that at high energies elliptic flow is generated only during the initial stages of the expansion while radial flow continues to grow until freeze-out. Quantitative comparisons with SPS data from semiperipheral Pb+Pb collisions suggest the applicability of hydrodynamical concepts already $\approx$ 1 fm/c after impact.
Radial and elliptic flow at RHIC: further predictions
Using a hydrodynamic model, we predict the transverse momentum dependence of the spectra and the elliptic flow for different hadrons in Au+Au collisions at sqrt(s) = 130 A GeV. The dependence of the differential and p_t-integrated elliptic flow on the hadron mass, equation of state and freeze-out temperature is studied both numerically and analytically.
Centrality dependence of multiplicity, transverse energy, and elliptic flow from hydrodynamics
The centrality dependence of the charged multiplicity, transverse energy, and elliptic flow coefficient is studied in a hydrodynamic model, using a variety of different initializations which model the initial energy or entropy production process as a hard or soft process, respectively. While the charged multiplicity depends strongly on the chosen initialization, the p_t-integrated elliptic flow for charged particles as a function of charged particle multiplicity and the p_t-differential elliptic flow for charged particles in minimum bias events turn out to be almost independent of the initial energy density profile.