0000000000052113

AUTHOR

Bernd A. Kniehl

showing 6 related works from this author

Inclusive B-meson production at small p_T in the general-mass variable-flavor-number scheme

2015

We calculate the cross section for the inclusive production of B mesons in pp and ppbar collisions at next-to-leading order in the general-mass variable-flavor-number scheme and show that a suitable choice of factorization scales leads to a smooth transition to the fixed-flavor-number scheme. Our numerical results are in good agreement with data from the Tevatron and LHC experiments at small and at large transverse momenta.

Particle physicsPhysics and Astronomy (miscellaneous)TevatronFOS: Physical scienceslow [transverse momentum]01 natural sciencesCross section (physics)High Energy Physics - Phenomenology (hep-ph)Factorization0103 physical sciencesscattering [p p]Order (group theory)B mesonddc:530Batavia TEVATRON Collinclusive production [B]factorization [scale]010306 general physicsnumerical calculationsNuclear ExperimentEngineering (miscellaneous)Variable (mathematics)PhysicsLarge Hadron Colliderscattering [anti-p p]higher-order [correction]010308 nuclear & particles physicsHigh Energy Physics::Phenomenologycalculated [total cross section]Transverse planeHigh Energy Physics - PhenomenologyCERN LHC Coll[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::Experiment1 [higher-order]correction [total cross section]
researchProduct

Finite-Mass Effects on Inclusive B-Meson Hadroproduction

2007

We calculate the transverse-momentum (p_T) distribution for the inclusive hadroproduction of B mesons at intermediate values of p_T at next-to-leading order (NLO) in a dedicated finite-mass scheme using realistic non-perturbative fragmentation functions that are obtained through a global fit to e^+e^- data from CERN LEP1 and SLAC SLC exploiting their universality and scaling violations. We find that finite-mass effects moderately enhance the cross section, by about 20% at p_T = 2 m_b, and rapidly fade out with increasing value of p_T, so that the zero-mass prediction is reached. We also perform comparisons with recent ppbar data taken by the CDF Collaboration in run II at the Fermilab Tevat…

Quantum chromodynamicsPhysicsNuclear and High Energy PhysicsParticle physicsLarge Hadron ColliderMeson010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyTevatronFOS: Physical sciences01 natural sciencesNuclear physicsHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]0103 physical sciencesPhysics::Accelerator PhysicsB mesonddc:530High Energy Physics::ExperimentFermilab010306 general physicsNuclear ExperimentScalingFinite mass
researchProduct

Reconciling open charm production at the Fermilab Tevatron with QCD

2005

We study the inclusive hadrodroduction of D^0, D^+, D^{*+}, and D_s^+ mesons at next-to-leading order in the parton model of quantum chromodynamics endowed with universal non-perturbative fragmentation functions (FFs) fitted to e^+e^- annihilation data from CERN LEP1. Working in the general-mass variable-flavor-number scheme, we resum the large logarithms through the evolution of the FFs and, at the same time, retain the full dependence on the charm-quark mass without additional theoretical assumptions. In this way, the cross section distributions in transverse momentum recently measured by the CDF Collaboration in run II at the Fermilab Tevatron are described within errors.

Quarkperturbation theory [quantum chromodynamics]Particle physicsMesoninclusive reaction [anti-p p]High Energy Physics::LatticeTevatronhadroproduction [charmed meson]General Physics and AstronomyFOS: Physical sciencesPartontransverse momentum [differential cross section]High Energy Physics - ExperimentNuclear physicsDGLAP equationHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)Factorizationddc:550Fermilabnumerical calculationsNuclear ExperimentCDF [interpretation of experiments]PhysicsQuantum chromodynamicsAnnihilation1960 GeV-cmsHigh Energy Physics::PhenomenologyD*(2010)nonperturbative [fragmentation function]parton [model]D0High Energy Physics - PhenomenologyD+charm [mass]High Energy Physics::Experiment
researchProduct

Heavy quark pair production in gluon fusion at next-to-next-to-leadingO(αs4)order: One-loop squared contributions

2008

We calculate the next-to-next-to-leading-order $\mathcal{O}({\ensuremath{\alpha}}_{s}^{4})$ one-loop squared corrections to the production of heavy-quark pairs in the gluon-gluon fusion process. Together with the previously derived results on the $q\overline{q}$ production channel, the results of this paper complete the calculation of the one-loop squared contributions of the next-to-next-to-leading-order $\mathcal{O}({\ensuremath{\alpha}}_{s}^{4})$ radiative QCD corrections to the hadroproduction of heavy flavors. Our results, with the full mass dependence retained, are presented in a closed and very compact form, in dimensional regularization.

PhysicsQuantum chromodynamicsQuarkNuclear and High Energy PhysicsParticle physicsHigh Energy Physics::LatticeHigh Energy Physics::PhenomenologyOrder (ring theory)GluonRenormalizationDimensional regularizationPair productionHigh Energy Physics::ExperimentProduction (computer science)Physical Review D
researchProduct

Open charm hadroproduction and the charm content of the proton

2009

We advocate charmed-hadron inclusive hadroproduction as a laboratory to probe intrinsic charm (IC) inside the colliding hadrons. Working at next-to-leading order in the general-mass variable-flavor-number scheme endowed with non-perturbative fragmentation functions recently extracted from a global fit to e^+e^- annihilation data from KEKB, CESR, and LEP1, we first assess the sensitivity of Tevatron data of D^0, D^+, and D^{*+} inclusive production to the IC parameterizations provided by Pumplin et al. We then argue that similar data from pp collisions at RHIC would have the potential to discriminate between different IC models provided they reach out to sufficiently large values of transver…

PhysicsNuclear and High Energy PhysicsParticle physicsAnnihilation010308 nuclear & particles physicsHadronHigh Energy Physics::PhenomenologyTevatronFOS: Physical sciences01 natural sciencesNuclear physicsHigh Energy Physics - PhenomenologyKEKBHigh Energy Physics - Phenomenology (hep-ph)[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]0103 physical sciencesTransverse momentumHigh Energy Physics::ExperimentOpen charm010306 general physicsNuclear Experiment12.38.Bx 13.85.Ni 13.87.Fh 14.40.Nd
researchProduct

Λc± production in pp collisions with a new fragmentation function

2020

We study inclusive ${\mathrm{\ensuremath{\Lambda}}}_{c}^{\ifmmode\pm\else\textpm\fi{}}$-baryon production in $pp$ collisions in the general-mass variable-flavor-number scheme and compare with data from the LHCb, ALICE, and CMS collaborations. We perform a new fit of the $c\ensuremath{\rightarrow}{\mathrm{\ensuremath{\Lambda}}}_{c}^{+}$ fragmentation function combining ${e}^{+}{e}^{\ensuremath{-}}$ data from OPAL and Belle. The agreement with LHC data is slightly worse compared with a calculation using an older fragmentation function, and the tension between different determinations of ${\mathrm{\ensuremath{\Lambda}}}_{c}^{\ifmmode\pm\else\textpm\fi{}}$ production cross sections from the LHC…

PhysicsParticle physics010308 nuclear & particles physicsHigh Energy Physics::Phenomenology0103 physical sciencesFragmentation functionHigh Energy Physics::ExperimentNuclear Experiment010306 general physicsLambda01 natural sciencesSlightly worsePhysical Review D
researchProduct