0000000000052911
AUTHOR
John A. Stella
On the biomechanical function of scaffolds for engineering load-bearing soft tissues
Replacement or regeneration of load-bearing soft tissues has long been the impetus for the development of bioactive materials. While maturing, current efforts continue to be confounded by our lack of understanding of the intricate multi-scale hierarchical arrangements and interactions typically found in native tissues. The current state of the art in biomaterial processing enables a degree of controllable microstructure that can be used for the development of model systems to deduce fundamental biological implications of matrix morphologies on cell function. Furthermore, the development of computational frameworks which allow for the simulation of experimentally derived observations represe…
A Method to Extract the Complete Fiber Network Topology of Planar Fibrous Tissues and Scaffolds
Improving fabrication protocols and design strategies, investigating on how fibrous ECM and synthetic architectures affect cell morphology, metabolism and phenotypic expression, predicting mechanical behaviors, have increasingly become crucial goals in the understanding of native tissues and in the development of engineered tissue. In the present study, an image-based analysis approach that provides an automatic tool to fully characterize engineered tissue fiber network topology was developed. The following micro architectural features were detected: fiber angle distribution, fiber connectivity, fiber overlap spatial density, and fiber diameter. In order to demonstrate the potential of this…
Large strain stimulation promotes extracellular matrix production and stiffness in an elastomeric scaffold model
Mechanical conditioning of engineered tissue constructs is widely recognized as one of the most relevant methods to enhance tissue accretion and microstructure, leading to improved mechanical behaviors. The understanding of the underlying mechanisms remains rather limited, restricting the development of in silico models of these phenomena, and the translation of engineered tissues into clinical application. In the present study, we examined the role of large strip-biaxial strains (up to 50%) on ECM synthesis by vascular smooth muscle cells (VSMCs) micro-integrated into electrospun polyester urethane urea (PEUU) constructs over the course of 3 weeks. Experimental results indicated that VSMC …
Micro-Meso Scale Model of Electrospun Poly (Ester Urethane) Urea Scaffolds
Soft tissue engineering applications require accurate descriptions of native and engineered tissue microstructure and their contributions to global mechanical behavior [1–6]. Moreover, micro scale based mechanical models can be used to: (1) guide tissue engineering scaffold design, (2) provide a better understanding of cellular mechanical and metabolic response to local micro-structural deformations, and (3) investigate structural changes as a function of deformation across multiple scales. We present a novel approach to automatically collect micro-architectural data (fibers overlaps, fiber connectivity, and fiber orientation) from SEM images of electrospun poly (ester urethane) urea (PEUU)…