0000000000052986
AUTHOR
Romain Minebois
A multiphase multiobjective dynamic genome-scale model shows different redox balancing among yeast species of the saccharomyces genus in fermentation
Yeasts constitute over 1,500 species with great potential for biotechnology. Still, the yeast Saccharomyces cerevisiae dominates industrial applications, and many alternative physiological capabilities of lesser-known yeasts are not being fully exploited. While comparative genomics receives substantial attention, little is known about yeasts’ metabolic specificity in batch cultures. Here, we propose a multiphase multiobjective dynamic genome-scale model of yeast batch cultures that describes the uptake of carbon and nitrogen sources and the production of primary and secondary metabolites. The model integrates a specific metabolic reconstruction, based on the consensus Yeast8, and a kinetic …
A multi-phase multi-objective dynamic genome-scale model shows different redox balancing among yeast species in fermentation
ABSTRACTYeasts constitute over 1500 species with great potential for biotechnology. Still, the yeastSaccharomyces cerevisiaedominates industrial applications and many alternative physiological capabilities of lesser-known yeasts are not being fully exploited. While comparative genomics receives substantial attention, little is known about yeasts’ metabolic specificity in batch cultures. Here we propose a multi-phase multi-objective dynamic genome-scale model of yeast batch cultures that describes the uptake of carbon and nitrogen sources and the production of primary and secondary metabolites. The model integrates a specific metabolic reconstruction, based on the consensus Yeast8, and a kin…
Aroma production and fermentation performance of S. cerevisiae × S. kudriavzevii natural hybrids under cold oenological conditions
This work aims to describe the wine fermentation characteristics of 23 natural S. cerevisiae × S. kudriavzevii hybrid yeasts related to fermentative environments isolated from different regions and their significance for the aroma spectra of the produced wines. Fermentations were performed at 12 °C in artificial must, and S. cerevisiae and S. kudriavzevii pure species strains were used for comparison purposes. We determined the relevant kinetic parameters of fermentation, the concentration of the main metabolites and the main aroma-related compounds produced after fermentation. The results revealed that some strains that show well-rounded characteristics could be profitable yeast starters f…
New Trends in the Uses of Yeasts in Oenology
Abstract The most important factor in winemaking is the quality of the final product and the new trends in oenology are dictated by wine consumers and producers. Traditionally the red wine is the most consumed and more popular; however, in the last times, the wine companies try to attract other groups of populations, especially young people and women that prefer sweet, whites or rose wines, very fruity and with low alcohol content. Besides the new trends in consumer preferences, there are also increased concerns on the effects of alcohol consumption on health and the effects of global climate change on grape ripening and wine composition producing wines with high alcohol content. Although S…
Metabolic differences between a wild and a wine strain of Saccharomyces cerevisiae during fermentation unveiled by multi‐omic analysis
Saccharomyces cerevisiae, a widespread yeast present both in the wild and in fermentative processes, like winemaking. During the colonization of these human‐associated fermentative environments, certain strains of S. cerevisiae acquired differential adaptive traits that enhanced their physiological properties to cope with the challenges imposed by these new ecological niches. The advent of omics technologies allowed unveiling some details of the molecular bases responsible for the peculiar traits of S. cerevisiae wine strains. However, the metabolic diversity within yeasts remained poorly explored, in particular that existing between wine and wild strains of S. cerevisiae. For this purpose,…
A multi-phase multi-objective genome-scale model shows diverse redox balance strategies in yeasts
Yeasts constitute over 1500 species with great potential for biotechnology. Still, the yeastSaccharomyces cerevisiaedominates industrial applications and many alternative physiological capabilities of lesser-known yeasts are not being fully exploited. While comparative genomics receives substantial attention, little is known about yeasts’ metabolic specificity in batch cultures. Here we propose a multi-phase multi-objective dynamic genome-scale model of yeast batch cultures that describes the uptake of carbon and nitrogen sources and the production of primary and secondary metabolites. The model integrates a specific metabolic reconstruction, based on the consensus Yeast8, and a kinetic mod…