A multiphase multiobjective dynamic genome-scale model shows different redox balancing among yeast species of the saccharomyces genus in fermentation
Yeasts constitute over 1,500 species with great potential for biotechnology. Still, the yeast Saccharomyces cerevisiae dominates industrial applications, and many alternative physiological capabilities of lesser-known yeasts are not being fully exploited. While comparative genomics receives substantial attention, little is known about yeasts’ metabolic specificity in batch cultures. Here, we propose a multiphase multiobjective dynamic genome-scale model of yeast batch cultures that describes the uptake of carbon and nitrogen sources and the production of primary and secondary metabolites. The model integrates a specific metabolic reconstruction, based on the consensus Yeast8, and a kinetic …
A multi-phase multi-objective dynamic genome-scale model shows different redox balancing among yeast species in fermentation
ABSTRACTYeasts constitute over 1500 species with great potential for biotechnology. Still, the yeastSaccharomyces cerevisiaedominates industrial applications and many alternative physiological capabilities of lesser-known yeasts are not being fully exploited. While comparative genomics receives substantial attention, little is known about yeasts’ metabolic specificity in batch cultures. Here we propose a multi-phase multi-objective dynamic genome-scale model of yeast batch cultures that describes the uptake of carbon and nitrogen sources and the production of primary and secondary metabolites. The model integrates a specific metabolic reconstruction, based on the consensus Yeast8, and a kin…
A multi-phase multi-objective genome-scale model shows diverse redox balance strategies in yeasts
Yeasts constitute over 1500 species with great potential for biotechnology. Still, the yeastSaccharomyces cerevisiaedominates industrial applications and many alternative physiological capabilities of lesser-known yeasts are not being fully exploited. While comparative genomics receives substantial attention, little is known about yeasts’ metabolic specificity in batch cultures. Here we propose a multi-phase multi-objective dynamic genome-scale model of yeast batch cultures that describes the uptake of carbon and nitrogen sources and the production of primary and secondary metabolites. The model integrates a specific metabolic reconstruction, based on the consensus Yeast8, and a kinetic mod…
Strategies for structuring interdisciplinary education in Systems Biology: an European perspective
Systems Biology is an approach to biology and medicine that has the potential to lead to a better understanding of how biological properties emerge from the interaction of genes, proteins, molecules, cells and organisms. The approach aims at elucidating how these interactions govern biological function by employing experimental data, mathematical models and computational simulations. As Systems Biology is inherently multidisciplinary, education within this field meets numerous hurdles including departmental barriers, availability of all required expertise locally, appropriate teaching material and example curricula. As university education at the Bachelor’s level is traditionally built upon…