A local approach to a class of locally finite groups
This paper is devoted to the study of a class of generalised P-nilpotent groups in the universe cℒ̄ of all radical locally finite groups satisfying min-q for every prime q. Some results of finite groups are extended and a characterisation of the injectors associated with this class is given.
On periodic radical groups in which permutability is a transitive relation
Abstract A group G is said to be a PT - group if permutability is a transitive relation in the set of all subgroups of G . Our purpose in this paper is to study PT -groups in the class of periodic radical groups satisfying min- p for all primes p .
The Fitting Subgroup and Some Injectors of Radical Locally Finite Groups with min-pfor Allp
Abstract This work was intended as an attempt to continue the study of the class ℬ of generalised nilpotent groups started in a previous paper. We present some results concerning the Fitting subgroup and the ℬ-injectors of a radical locally finite group satisfying min-p for all p.
On a Class of Generalized Nilpotent Groups
AbstractWe explore the class B of generalized nilpotent groups in the universe c[formula] of all radical locally finite groups satisfying min-p for every prime p. We obtain that this class is the natural generalization of the class of finite nilpotent groups from the finite universe to the universe c[formula]. Moreover, the structure of B-groups is determined explicitly. It is also shown that B is a subgroup-closed c[formula]-formation and that in every c[formula]-group the Fitting subgroup is the unique maximal normal B-subgroup.