Pain-induced alterations in the dynorphinergic system within the mesocorticolimbic pathway: Implication for alcohol addiction.
Latest studies have revealed that pain negatively impacts on reward processing and motivation leading to negative affective states and stress. These states not only reduce quality of life of patients by increasing the appearance of psychiatric comorbidities, but also have an important impact on vulnerability to drug abuse, including alcohol. In fact, clinical, epidemiological but also preclinical studies have revealed that the presence of pain is closely related to alcohol use disorders (AUDs). All this evidence suggests that pain is a factor that increases the risk of suffering AUD, predicting heavy drinking behavior and relapse drinking in those patients with a previous history of AUD. Th…
Neuroimmune and Mu-Opioid Receptor Alterations in the Mesocorticolimbic System in a Sex-Dependent Inflammatory Pain-Induced Alcohol Relapse-Like Rat Model
Evidence concerning the role of alcohol-induced neuroinflammation in alcohol intake and relapse has increased in the last few years. It is also proven that mu-opioid receptors (MORs) mediate the reinforcing properties of alcohol and, interestingly, previous research suggests that neuroinflammation and MORs could be related. Our objective is to study neuroinflammatory states and microglial activation, together with adaptations on MOR expression in the mesocorticolimbic system (MCLS) during the abstinence and relapse phases. To do so, we have used a sex-dependent rat model of complete Freund’s adjuvant (CFA)-induced alcohol deprivation effect (ADE). Firstly, our results confirm that only CFA-…
Crosstalk between Mu-Opioid receptors and neuroinflammation: Consequences for drug addiction and pain
Mu-Opioid Receptors (MORs) are well-known for participating in analgesia, sedation, drug addiction, and other physiological functions. Although MORs have been related to neuroinflammation their biological mechanism remains unclear. It is suggested that MORs work alongside Toll-Like Receptors to enhance the release of pro-inflammatory mediators and cytokines during pathological conditions. Some cytokines, including TNF-α, IL-1β and IL-6, have been postulated to regulate MORs levels by both avoiding MOR recycling and enhancing its production. In addition, Neurokinin-1 Receptor, also affected during neuroinflammation, could be regulating MOR trafficking. Therefore, inflammation in the central …
Kappa opioid receptor blockade in the nucleus accumbens shell prevents sex-dependent alcohol deprivation effect induced by inflammatory pain.
ABSTRACT Pain-induced negative affect reduces life quality of patients by increasing psychiatric comorbidities, including alcohol use disorders (AUDs). Indeed, clinical data suggest pain as a risk factor to suffer AUDs, predicting relapse drinking in abstinent patients. Here, we analyse the impact of pain on alcohol relapse and the role of kappa opioid receptor (KOR) activation in mediating these pain-induced effects because KORs play an important role in pain-driven negative affect and AUD. Female and male Sprague-Dawley rats underwent 2 alcohol intermittent access periods separated by a forced abstinence period. The complete Freund adjuvant model of inflammatory pain was introduced during…
The Life Cycle of the Mu-Opioid Receptor
Opioid receptors (ORs) are undisputed targets for the treatment of pain. Unfortunately, targeting these receptors therapeutically poses significant challenges including addiction, dependence, tolerance, and the appearance of side effects, such as respiratory depression and constipation. Moreover, misuse of prescription and illicit narcotics has resulted in the current opioid crisis. The mu-opioid receptor (MOR) is the cellular mediator of the effects of most commonly used opioids, and is a prototypical G protein-coupled receptor (GPCR) where new pharmacological, signalling and cell biology concepts have been coined. This review summarises the knowledge of the life cycle of this therapeutic …