0000000000053294
AUTHOR
István Kuti
Evidence of oblate-prolate shape coexistence in the strongly-deformed nucleus 119Cs
International audience; Prolate-oblate shape coexistence close to the ground state in the strongly-deformed proton-rich A≈120 nuclei is reported for the first time. One of the four reported bands in 119Cs, built on a 11/2− state at 670 keV, consists of nearly degenerate signature partners, and has properties which unequivocally indicate the strongly-coupled πh11/2[505]11/2− configuration associated with oblate shape. Together with the decoupled πh11/2[541]3/2− band built on the 11/2− prolate state at 110 keV, for which a half-life of T1/2=55(5)μs has been measured, the new bands bring evidence of shape coexistence at low spin in the proton-rich strongly deformed A≈120 nuclei, a phenomenon p…
β decay of Ni75 and the systematics of the low-lying level structure of neutron-rich odd- A Cu isotopes
Background: Detailed spectroscopy of neutron-rich odd-A Cu isotopes is of great importance for studying the shell evolution in the region of Ni78. While there is experimental information on excited states in Cu69−73,77,79 isotopes, the information concerning Cu75 is very limited. Purpose: Experimentally observed single-particle, core-coupling, and proton-hole intruder states in Cu75, will complete the systematics of these states in the chain of isotopes. Method: Excited states in Cu75 were populated in the β decay of Ni75 isotopes. The Ni nuclei were produced by the in-flight fission of U238 projectiles, and were separated, identified, and implanted in a highly segmented Si detector array f…
Is Seniority a Partial Dynamic Symmetry in the First $\nu g_{9/2}$ Shell?
The low-lying structures of the midshell νg9/2 Ni isotopes 72Ni and 74Ni have been investigated at the RIBF facility in RIKEN within the EURICA collaboration. Previously unobserved low-lying states were accessed for the first time following β decay of the mother nuclei 72Co and 74Co. As a result, we provide a complete picture in terms of the seniority scheme up to the first (8+) levels for both nuclei. The experimental results are compared to shell-model calculations in order to define to what extent the seniority quantum number is preserved in the first neutron g9/2 shell. We find that the disappearance of the seniority isomerism in the (81+) states can be explained by a lowering of the se…
Investigation of the Δn = 0 selection rule in Gamow-Teller transitions: The β-decay of 207Hg
5 pags., 3 figs., 1 tab. -- Open Access funded by Creative Commons Atribution Licence 4.0
Evolution from γ -soft to stable triaxiality in Nd136 as a prerequisite of chirality
The level structure of Nd136 has been investigated using the Mo100(Ar40,4n) reaction and the JUROGAM II+RITU+GREAT setup. The level scheme has been extended significantly. Many new bands have been identified both at low and high spin, among which are five nearly degenerate bands interpreted as chiral partners. Excitation energies, spins, and parities of the previously known bands are revised and firmly established, and some previously known bands have been revised. Configurations are assigned to the observed bands based on cranked Nilsson-Strutinsky calculations. The band structure of Nd136 is now clarified and the various types of single-particle and collective excitations are well underst…
Rich band structure and multiple long-lived isomers in the odd-odd Cs118 nucleus
Tilted precession bands in Nd135
Two new excited bands built on the πh11/2 configuration have been identified in Nd135 in addition to the known πh11/2 band. The energy spectra of the excited bands and the available electromagnetic transition probabilities are in good agreement with theoretical results obtained using quasiparticle-plus-triaxial-rotor model calculations. The properties of the bands identify them as tilted precession bands instead of wobbling bands. Our results give a new insight into the interpretation of the low-lying bands in odd-A mass nuclei, and can stimulate future studies to address the nuclear triaxiality.
Evidence of chiral bands in even-even nuclei
Evidence for chiral doublet bands has been observed for the first time in the even-even nucleus 136 Nd . One chiral band was firmly established. Four other candidates for chiral bands were also identified, which can contribute to the realization of the multiple pairs of chiral doublet bands ( M χ D ) phenomenon. The observed bands are investigated by the constrained and tilted axis cranking covariant density functional theory (TAC-CDFT). Possible configurations have been explored. The experimental energy spectra, angular momenta, and B ( M 1 ) / B ( E 2 ) values for the assigned configurations are globally reproduced by TAC-CDFT. Calculated results support the chiral interpretation of the o…
Octupole states in Tl207 studied through β decay
The β decay of 207Hg into the single-proton-hole nucleus 207Tl has been studied through γ-ray spectroscopy at the ISOLDE Decay Station (IDS) with the aim of identifying states resulting from coupling of the πs−11/2, πd−13/2, and πh−111/2 shell model orbitals to the collective octupole vibration. Twenty-two states were observed lying between 2.6 and 4.0 MeV, eleven of which were observed for the first time, and 78 new transitions were placed. Two octupole states (s1/2-coupled) are identified and three more states (d3/2-coupled) are tentatively assigned using spin-parity inferences, while further h11/2-coupled states may also have been observed for the first time. Comparisons are made with st…
Highly deformed bands in Nd nuclei: New results and consistent interpretation within the cranked Nilsson-Strutinsky formalism
International audience; Three new highly-deformed (HD) bands are identified in Nd136 and the highly deformed band of Nd137 is extended at higher spin by four transitions, revealing a band crossing associated with the occupation of the second νi13/2 intruder orbital. Extended cranked Nilsson-Strutinsky calculations are performed for all HD bands observed in Nd134, Nd136, and Nd137, achieving for the first time a consistent interpretation of all HD bands in the Nd nuclei. The new interpretation has significant consequences, like the change of parity of the yrast HD bands of Nd134 and Nd136, and the involvement of two negative-parity neutron intruder orbitals in the configurations of most HD b…
Low-lying excitations in Ni 72
A. I. Morales et al.; 14 págs.; 9 figs.; 3 tabs.
Spectroscopy of the neutron-deficientN=50nucleusRh95
The neutron-deficient semimagic (neutron number N = 50) Rh-95 nucleus has been produced at high spins using the projectile-target system Ca-40 + Ni-58 at 125 MeV beam energy. The gamma-decays of le ...
Pairing-quadrupole interplay in the neutron-deficient tin nuclei: First lifetime measurements of low-lying states in 106,108Sn
The lifetimes of the low-lying excited states 2(+) and 4(+) have been directly measured in the neutron-deficient Sn-106,Sn-108 isotopes. the nuclei were populated via a deep-inelastic reaction and the lifetime measurement was performed employing a differential plunger device. the emitted gamma rays were detected by the AGATA array, while the reaction products were uniquely identified by the VAMOS++ magnetic spectrometer. Large-Scale Shell-Model calculations with realistic forces indicate that, independently of the pairing content of the interaction, the quadrupole force is dominant in the B(E2; 2(1)(+) -> 0(g.s)(+)) values and it describes well the experimental pattern for Sn104-114 ; the B…
Competition between Allowed and First-Forbidden β Decay: The Case of Hg208→Tl208
The β decay of ^{208}Hg into the one-proton hole, one neutron-particle _{81}^{208}Tl_{127} nucleus was investigated at CERN-ISOLDE. Shell-model calculations describe well the level scheme deduced, validating the proton-neutron interactions used, with implications for the whole of the N>126, Z<82 quadrant of neutron-rich nuclei. While both negative and positive parity states with spin 0 and 1 are expected within the Q_{β} window, only three negative parity states are populated directly in the β decay. The data provide a unique test of the competition between allowed Gamow-Teller and Fermi, and first-forbidden β decays, essential for the understanding of the nucleosynthesis of heavy nuclei in…
Collective rotation of an oblate nucleus at very high spin
International audience; A sequence of nine almost equidistant quadrupole transitions is observed in Nd137. The sequence represents an extremely regular rotational band that extends to a spin of about 75/2 and an excitation energy of ≈4.5MeV above yrast. Cranked mean-field calculations of the Nilsson-Strutinsky type suggest an oblate shape for the band. They reproduce the observed I(I+1) dependence of the rotational energy whereas predicting a pronounced decrease in the deformation, which is the hallmark of antimagnetic rotation.
Character of particle-hole excitations in94Ru deduced fromγ-ray angular correlation and linear polarization measurements
Linear polarization and angular correlations of gamma-rays depopulating excited states in the neutron-deficient nucleus Ru-94(44)50 have been measured, enabling firm spin-parity assignments for several excited states in this nucleus. The deduced multipolarities of strong transitions in the yrast structure were found to be mostly of stretched M1, E1, and E2 types and, in most cases, in agreement with previous tentative assignments. The deduced multipolarity of the 1869 keV and the connecting 257 and 1641 keV transitions indicates that the state at 6358 keV excitation energy has spin parity 12(1)(-) rather than 12(3)(+) as proposed in previous works. The presence of a 12(1)(-) state is interp…
Neutron excitations in Ba119
Neutron Skin Effects in Mirror Energy Differences: The Case of Mg23−Na23
Energy differences between analogue states in the T=1/2 Mg23-Na23 mirror nuclei have been measured along the rotational yrast bands. This allows us to search for effects arising from isospin-symmetry-breaking interactions (ISB) and/or shape changes. Data are interpreted in the shell model framework following the method successfully applied to nuclei in the f7/2 shell. It is shown that the introduction of a schematic ISB interaction of the same type of that used in the f7/2 shell is needed to reproduce the data. An alternative novel description, applied here for the first time, relies on the use of an effective interaction deduced from a realistic charge-dependent chiral nucleon-nucleon pote…
Isospin Properties of Nuclear Pair Correlations from the Level Structure of the Self-Conjugate Nucleus Ru88
The low-lying energy spectrum of the extremely neutron-deficient self-conjugate (N = Z) nuclide 88 44Ru44 has been measured using the combination of the Advanced Gamma Tracking Array (AGATA) spectrometer, the NEDA and Neutron Wall neutron detector arrays, and the DIAMANT charged particle detector array. Excited states in 88Ru were populated via the 54Fe(36Ar; 2n )88Ru fusion-evaporation reaction at the Grand Acc�el�erateur National d'Ions Lourds (GANIL) accelerator complex. The observed -ray cascade is assigned to 88Ru using clean prompt - -2-neutron coincidences in anti-coincidence with the detection of charged particles, con�rming and extending the previously assigned sequence of low-lyin…
Chirality of $^{135}$Nd reexamined: Evidence for multiple chiral doublet bands
One new pair of positive-parity chiral doublet bands have been identified in the odd-$A$ nucleus $^{135}$Nd which together with the previously reported negative-parity chiral doublet bands constitute a third case of multiple chiral doublet (M$\chi$D) bands in the $A\approx130$ mass region. The properties of the M$\chi$D bands are well reproduced by constrained covariant density functional theory and particle rotor model calculations. The newly observed M$\chi$D bands in $^{135}$Nd represents an important milestone in supporting the existence of M$\chi$D in nuclei.