0000000000053365
AUTHOR
Meir Wilchek
Recombinant NeutraLite Avidin: a non-glycosylated, acidic mutant of chicken avidin that exhibits high affinity for biotin and low non-specific binding properties
AbstractA recombinant non-glycosylated and acidic form of avidin was designed and expressed in soluble form in baculovirus-infected insect cells. The mutations were based on the same principles that guided the design of the chemically and enzymatically modified avidin derivative, known as NeutraLite Avidin. In this novel recombinant avidin derivative, five out of the eight arginine residues were replaced with neutral amino acids, and two of the lysine residues were replaced by glutamic acid. In addition, the carbohydrate-bearing asparagine-17 residue was altered to an isoleucine, according to the known sequences of avidin-related genes. The resultant mutant protein, termed recombinant Neutr…
Factors Dictating the Pseudocatalytic Efficiency of Avidins
The hydrolysis of biotinyl p-nitrophenyl ester (BNP) by a series of avidin derivatives was examined. Surprisingly, a hyperthermostable avidin-related protein (AVR4) was shown to display extraordinary yet puzzling hydrolytic activity. In order to evaluate the molecular determinants that contribute to the reaction, the crystal structure of AVR4 was compared with those of avidin, streptavidin and key mutants of the two proteins in complex with biotinyl p-nitroanilide (BNA), the inert amide analogue of BNP. The structures revealed that a critical lysine residue contributes to the hydrolysis of BNP by avidin but has only a minor contribution to the AVR4-mediated reaction. Indeed, the respective …
Dimer-tetramer transition between solution and crystalline states of streptavidin and avidin mutants.
ABSTRACT The biotin-binding tetrameric proteins, streptavidin from Streptomyces avidinii and chicken egg white avidin, are excellent models for the study of subunit-subunit interactions of a multimeric protein. Efforts are thus being made to prepare mutated forms of streptavidin and avidin, which would form monomers or dimers, in order to examine their effect on quaternary structure and assembly. In the present communication, we compared the crystal structures of binding site W→K mutations in streptavidin and avidin. In solution, both mutant proteins are known to form dimers, but upon crystallization, both formed tetramers with the same parameters as the native proteins. All of the intersub…
Crystallization and preliminary X-ray analysis of W120K mutant of streptavidin.
Bacterial streptavidin and chicken avidin are homotetrameric proteins that share an exceptionally high affinity towards the vitamin biotin. The biotin-binding sites in both proteins contain a crucial tryptophan residue contributed from an adjacent subunit. This particular tryptophan (W110 in avidin and W120 in streptavidin) plays an important role in both biotin binding and in the quaternary stabilities of the proteins. An intriguing naturally occurring alteration of tryptophan to lysine was previously described in the C-terminal domain of sea-urchin fibropellins, which share a relatively high sequence similarity with avidin and streptavidin. Avidin (Avm-W110K) and streptavidin (Savm-W120K)…
High-resolution crystal structure of an avidin-related protein: insight into high-affinity biotin binding and protein stability.
The chicken avidin gene belongs to an extended gene family encoding seven avidin-related genes (AVRs), of which only avidin is expressed in the chicken. The sequences of AVR4 and AVR5 are identical and the common protein (AVR4) has been expressed both in insect and bacterial systems. The recombinant proteins are similarly hyperthermostable and bind biotin with similarly high affinities. AVR4 was crystallized in the apo and biotin-complexed forms and their structures were determined at high resolution. Its tertiary and quaternary structures are very similar to those of avidin and streptavidin. Its biotin-binding site shows only a few alterations compared with those of avidin and streptavidin…
Biotin Induces Tetramerization of a Recombinant Monomeric Avidin
Chicken avidin, a homotetramer that binds four molecules of biotin was converted to a monomeric form by successive mutations of interface residues to alanine. The major contribution to monomer formation was the mutation of two aspartic acid residues, which together account for ten hydrogen bonding interactions at the 1-4 interface. Mutation of these residues, together with the three hydrophobic residues at the 1-3 interface, led to stable monomer formation in the absence of biotin. Upon addition of biotin, the monomeric avidin reassociated to the tetramer, which exhibited properties similar to those of native avidin, with respect to biotin binding, thermostability, and protease resistance. …
Mutation of the important Tyr-33 residue of chicken avidin: functional and structural consequences
The strong interaction between avidin and biotin is so tight (dissociation constant 10-15M) that conditions usually sufficient for protein denaturing fail to dislodge biotin from the avidin—biotin complex. This kind of irreversible binding hinders the use of avidin in applications such as affinity purification or protein immobilization. To address this concern, we have constructed a series of mutants of the strategically positioned Tyr-33 in order to study the role of this residue in biotin binding, and to create avidin variants with more reversible ligand-binding properties. Unexpectedly, an avidin mutant in which Tyr-33 was replaced with phenylalanine (Avm-Y33F) displayed similar biotin-b…
Engineering of chicken avidin: a progressive series of reduced charge mutants.
Avidin, a positively charged egg-white glycoprotein, is a widely used tool in biotechnological applications because of its ability to bind biotin strongly. The high pI of avidin (approximately 10.5), however, is a hindrance in certain applications due to non-specific (charge-related) binding. Here we report a construction of a series of avidin charge mutants with pIs ranging from 9.4 to 4.7. Rational design of the avidin mutants was based on known crystallographic data together with comparative sequence alignment of avidin, streptavidin and a set of avidin-related genes which occur in the chicken genome. All charge mutants retained the ability to bind biotin tightly according to optical bio…
Mutation of a critical tryptophan to lysine in avidin or streptavidin may explain why sea urchin fibropellin adopts an avidin-like domain
Sea urchin fibropellins are epidermal growth factor homologues that harbor a C-terminal domain, similar in sequence to hen egg-white avidin and bacterial streptavidin. The fibropellin sequence was used as a conceptual template for mutation of designated conserved tryptophan residues in the biotin-binding sites of the tetrameric proteins, avidin and streptavidin. Three different mutations of avidin, Trp-110-Lys, Trp-70-Arg and the double mutant, were expressed in a baculovirus-infected insect cell system. A mutant of streptavidin, Trp-120-Lys, was similarly expressed. The homologous tryptophan to lysine (W--K) mutations of avidin and streptavidin were both capable of binding biotin and bioti…
Production of biologically active recombinant avidin in baculovirus-infected insect cells
Abstract An efficient lepidopteran insect cell system was established for the expression of a recombinant form of chicken egg-white avidin. The gene product was obtained in both secreted and intracellular forms, and biologically active recombinant avidin was isolated using affinity chromatography on an iminobiotin–agarose column. Similar to the known quaternary structure of the native egg-white protein, the purified recombinant protein was glycosylated and assembled mainly into tetramers. Like native avidin, the recombinant tetramer also exhibited a high level of thermostability, and was further stabilized upon binding biotin. The biotin-binding and structural properties of the recombinant …