0000000000053386
AUTHOR
Alessandro Sozzetti
The HADES RV Programme with HARPS-N@TNG. III. Flux-flux and activity-rotation relationships of early-M dwarfs
(Abridged) Understanding stellar activity in M dwarfs is crucial for the physics of stellar atmospheres as well as for ongoing radial velocity exoplanet programmes. Despite the increasing interest in M dwarfs, our knowledge of the chromospheres of these stars is far from being complete. We aim to test whether the relations between activity, rotation, and stellar parameters and flux-flux relationships also hold for early-M dwarfs on the main-sequence. We analyse in an homogeneous and coherent way a well defined sample of 71 late-K/early-M dwarfs that are currently being observed in the framework of the HArps-n red Dwarf Exoplanet Survey (HADES). Rotational velocities are derived using the cr…
The GAPS Programme with HARPS-N at TNG XV. A substellar companion around a K giant star identified with quasi-simultaneous HARPS-N and GIANO measurements
Context. Identification of planetary companions of giant stars is made difficult because of the astrophysical noise, that may produce radial velocity (RV) variations similar to those induced by a companion. On the other hand any stellar signal is wavelength dependent, while signals due to a companion are achromatic. Aims. Our goal is to determine the origin of the Doppler periodic variations observed in the thick disk K giant star TYC 4282-605-1 by HARPS-N at the Telescopio Nazionale Galileo (TNG) and verify if they can be due to the presence of a substellar companion. Methods. Several methods have been used to exclude the stellar origin of the observed signal including detailed analysis of…
HADES RV Programme with HARPS-N at TNG. IV. Time resolved analysis of the Ca II H&K and Hα chromospheric emission of low-activity early-type M dwarfs
Context. M dwarfs are prime targets for current and future planet search programs, particularly those focused on the detection and characterization of rocky planets in the habitable zone. In this context, understanding their magnetic activity is important for two main reasons: it affects our ability to detect small planets and it plays a key role in the characterization of the stellar environment. Aims: We analyze observations of the Ca II H&K and Hα lines as diagnostics of chromospheric activity for low-activity early-type M dwarfs. Methods: We analyze the time series of spectra of 71 early-type M dwarfs collected in the framework of the HADES project for planet search purposes. The HARPS-…
Ariel: Enabling planetary science across light-years
Ariel, the Atmospheric Remote-sensing Infrared Exoplanet Large-survey, was adopted as the fourth medium-class mission in ESA's Cosmic Vision programme to be launched in 2029. During its 4-year mission, Ariel will study what exoplanets are made of, how they formed and how they evolve, by surveying a diverse sample of about 1000 extrasolar planets, simultaneously in visible and infrared wavelengths. It is the first mission dedicated to measuring the chemical composition and thermal structures of hundreds of transiting exoplanets, enabling planetary science far beyond the boundaries of the Solar System. The payload consists of an off-axis Cassegrain telescope (primary mirror 1100 mm x 730 mm e…
iLocater: a diffraction-limited Doppler spectrometer for the Large Binocular Telescope
We are developing a stable and precise spectrograph for the Large Binocular Telescope (LBT) named "iLocater." The instrument comprises three principal components: a cross-dispersed echelle spectrograph that operates in the YJ-bands (0.97-1.30 microns), a fiber-injection acquisition camera system, and a wavelength calibration unit. iLocater will deliver high spectral resolution (R~150,000-240,000) measurements that permit novel studies of stellar and substellar objects in the solar neighborhood including extrasolar planets. Unlike previous planet-finding instruments, which are seeing-limited, iLocater operates at the diffraction limit and uses single mode fibers to eliminate the effects of m…
Multi-band high resolution spectroscopy rules out the hot Jupiter BD+20 1790b - First data from the GIARPS Commissioning
Context. Stellar activity is currently challenging the detection of young planets via the radial velocity (RV) technique. Aims. We attempt to definitively discriminate the nature of the RV variations for the young active K5 star BD+20 1790, for which visible (VIS) RV measurements show divergent results on the existence of a substellar companion. Methods. We compare VIS data with high precision RVs in the near infrared (NIR) range by using the GIANO - B and IGRINS spectrographs. In addition, we present for the first time simultaneous VIS-NIR observations obtained with GIARPS (GIANO - B and HARPS - N) at Telescopio Nazionale Galileo (TNG). Orbital RVs are achromatic, so the RV amplitude does …
ESPRESSO highlights the binary nature of the ultra-metal-poor giant HE 0107-5240
Context. The vast majority of the known stars of ultra low metallicity ([Fe=H] >-4:5) are known to be enhanced in carbon, and belong to the 'low-carbon band' (A(C) = log(C=H) + 12 7:6). It is generally, although not universally, accepted that this peculiar chemical composition reflects the chemical composition of the gas cloud out of which these stars were formed. The first ultra-metalpoor star discovered, HE 0107-5240, is also enhanced in carbon and belongs to the 'low-carbon band'. It has recently been claimed to be a long-period binary, based on radial velocity measurements. It has also been claimed that this binarity may explain its peculiar composition as being due to mass transfer fro…
Neutral Iron Emission Lines From The Day-side Of KELT-9b -- The GAPS Programme With HARPS-N At TNG XX
We present the first detection of atomic emission lines from the atmosphere of an exoplanet. We detect neutral iron lines from the day-side of KELT-9b (Teq $\sim$ 4, 000 K). We combined thousands of spectrally resolved lines observed during one night with the HARPS-N spectrograph (R $\sim$ 115, 000), mounted at the Telescopio Nazionale Galileo. We introduce a novel statistical approach to extract the planetary parameters from the binary mask cross-correlation analysis. We also adapt the concept of contribution function to the context of high spectral resolution observations, to identify the location in the planetary atmosphere where the detected emission originates. The average planetary li…
HADES RV programme with HARPS-N at TNG: XII. The abundance signature of M dwarf stars with planets
[Context] Most of our current knowledge on planet formation is still based on the analysis of main sequence, solar-type stars. Conversely, detailed chemical studies of large samples of M dwarfs hosting planets are still missing.
The GAPS Programme with HARPS-N at TNG: . Atmospheric Rossiter-McLaughlin effect and improved parameters of KELT-9b
In the framework of the GAPS project, we observed the planet-hosting star KELT-9 (A-type star, VsinI$\sim$110 km/s) with the HARPS-N spectrograph at the TNG. In this work we analyse the spectra and the extracted radial velocities (RVs), to constrain the physical parameters of the system and to detect the planetary atmosphere of KELT-9b. We extracted from the high-resolution optical spectra the mean stellar line profiles with an analysis based on the Least Square Deconvolution technique. Then, we computed the stellar RVs with a method optimized for fast rotators, by fitting the mean stellar line profile with a purely rotational profile instead of using a Gaussian function. The new spectra an…
The HADES RV Programme with HARPS-N@TNG VIII. Gl15A: A multiple wide planetary system sculpted by binary interaction
We present 20 years of radial velocity (RV) measurements of the M1 dwarf Gl15A, combining 5 years of intensive RV monitoring with the HARPS-N spectrograph with 15 years of archival HIRES/Keck RV data. We carry out an MCMC-based analysis of the RV time series, inclusive of Gaussian Process (GP) approach to the description of stellar activity induced RV variations. Our analysis confirms the Keplerian nature and refines the orbital solution for the 11.44-day period super Earth, Gl15A\,b, reducing its amplitude to $1.68^{+0.17}_{-0.18}$ m s$^{-1}$ ($M \sin i = 3.03^{+0.46}_{-0.44}$ M$_\oplus$), and successfully models a long-term trend in the combined RV dataset in terms of a Keplerian orbit wi…