The importance of vibronic perturbations in ferrocytochrome c spectra: a reevaluation of spectral properties based on low-temperature optical absorption, resonance Raman, and molecular-dynamics simulations.
We have measured and analyzed the low-temperature (T=10 K) absorption spectrum of reduced horse heart and yeast cytochrome c. Both spectra show split and asymmetric Q(0) and Q(upsilon) bands. The spectra were first decomposed into the individual split vibronic sidebands assignable to B(1g) (nu15) and A(2g) (nu19, nu21, and nu22) Herzberg-Teller active modes due to their strong intensity in resonance Raman spectra acquired with Q(0) and Q(upsilon) excitations. The measured band splittings and asymmetries cannot be rationalized solely in terms of electronic perturbations of the heme macrocycle. On the contrary, they clearly point to the importance of considering not only electronic perturbati…