Fault Diagnosis for Nonlinear Hydraulic-Mechanical Drilling Pipe Handling System
Leakage and increased friction are common faults in hydraulic cylinders that can have serious consequences if they are not detected at early stage. In this paper, the design of a fault detector for a nonlinear hydraulic mechanical system is presented. By considering the system in steady state, two residual signals are generated and analysed with a composite hypothesis test which accommodates for unknown parameters. The resulting detector is able to detect abrupt changes in leakage or friction given the noisy pressure and position measurements. Test rig measurements validate the properties of residuals and high fidelity simulation and experimental results demonstrate the performance and feas…
Robust adaptive backstepping control design for a Nonlinear Hydraulic-Mechanical System
The complex dynamics that characterize hydraulic systems make it difficult for the control design to achieve prescribed goals in an efficient manner. In this paper, we present the design and analysis of a robust nonlinear controller for a Nonlinear Hydraulic-Mechanical (NHM) System. The system consists of an electrohydraulic servo valve and two hydraulic cylinders. Specifically, by considering a part of the dynamics of the NHM system as a norm-bounded uncertainty, two adaptive controllers are developed based on the backstepping technique that ensure the tracking error signals asymptotically converge to zero despite the uncertainties in the system according to the Barbalat lemma. The resulti…
Cascade Controller Including Backstepping for Hydraulic-Mechanical Systems
Abstract Development of a cascade controller structure including adaptive backstepping for a nonlinear hydraulic-mechanical system is considered in this paper where a dynamic friction (LuGre) model is included to obtain the necessary accuracy. The paper compares the performance of two variants of an adaptive backstepping tracking controller with earlier results. The new control architecture is analysed and enhanced tracking performance is demonstrated when including the extended friction model. The complexity of the backstepping procedure is significantly reduced due to the cascade structure. Hence, the proposed control structure is better suited to real-time implementation.