0000000000053910

AUTHOR

S. D. Van Dyk

Light Curves of Radio Supernovae

We present the results from the on-going radio monitoring of recent type II supernovae (SNe), including SNe 2004et, 2004dj, 2002hh, 2001em, and 2001gd. Using the Very Large Array to monitor these supernovae, we present their radio light-curves. From these data we are able to discuss parameterizations and modeling and make predictions of the nature of the progenitors based on previous research. Derived mass loss rates assume wind-established circumstellar medium, shock velocity ~10,000 km/s, wind velocity ~10 km/s, and CSM Temperature ~10,000 K.

research product

Deceleration in the Expansion of SN 1993J

A rarity among supernova, SN 1993J in M81 can be studied with high spatial resolution. Its radio power and distance permit VLBI observations to monitor the expansion of its angular structure. This radio structure was previously revealed to be shell-like and to be undergoing a self-similar expansion at a constant rate. From VLBI observations at the wavelengths of 3.6 and 6 cm in the period 6 to 42 months after explosion, we have discovered that the expansion is decelerating. Our measurement of this deceleration yields estimates of the density profiles of the supernova ejecta and circumstellar material in standard supernova explosion models.

research product

Radio Insight into the Nature of Type IIb Progenitors

AbstractWe present the results of over two decades of radio observations of type IIb Supernovae with the Very Large Array and the Australia Telescope Compact Array. These radio studies illustrate the need for multi-wavelength follow-up to determine the progenitor scenario for type IIb events.

research product

Recent Type II Radio Supernovae

We present the results of radio observations, taken primarily with the Very Large Array, of Supernovae 1993J, 2001gd, 2001em, 2002hh, 2004dj, and 2004et. We have fit a parameterized model to the multi-frequency observations of each supernova. We compare the observed and derived radio properties of these supernovae by optical classification and discuss the implications.

research product

23 GHz VLBI Observations of SN 2008ax

We report on phase-referenced 23 GHz Very-Long-Baseline-Interferometry (VLBI) observations of the type IIb supernova SN 2008ax, made with the Very Long Baseline Array (VLBA) on 2 April 2008 (33 days after explosion). These observations resulted in a marginal detection of the supernova. The total flux density recovered from our VLBI image is 0.8$\pm$0.3 mJy (one standard deviation). As it appears, the structure may be interpreted as either a core-jet or a double source. However, the supernova structure could be somewhat confused with a possible close by noise peak. In such a case, the recovered flux density would decrease to 0.48$\pm$0.12 mJy, compatible with the flux densities measured with…

research product

A Decade of SN1993J: Discovery of Wavelength Effects in the Expansion Rate

We have studied the growth of the shell-like radio structure of supernova SN1993J in M81 from September 1993 through October 2003 with very-long-baseline interferometry (VLBI) observations at the wavelengths of 3.6, 6, and 18cm. For this purpose, we have developed a method to accurately determine the outer radius (R) of any circularly symmetric compact radio structure like SN1993J. The source structure of SN1993J remains circularly symmetric (with deviations from circularity under 2%) over almost 4000 days. We characterize the decelerated expansion of SN 1993J through approximately day 1500 after explosion with an expansion parameter $m= 0.845\pm0.005$ ($R \propto t^{m}$). However, from tha…

research product

A decade of SN 1993J : discovery of radio wavelength effects in the expansion rate

We studied the growth of the shell-like radio structure of supernova SN 1993J in M 81 from September 1993 to October 2003 with very-long-baseline interferometry (VLBI) observations at the wavelengths of 3.6, 6, and 18 cm. We developed a method to accurately determine the outer radius (R) of any circularly symmetric compact radio structure such as SN 1993J. The source structure of SN 1993J remains circularly symmetric (with deviations from circularity under 2%) over almost 4000 days. We characterize the decelerated expansion of SN 1993J until approximately day 1500 after explosion with an expansion parameter m = 0.845 ± 0.005 (R ∝ tm). However, from that day onwards the expansion differs whe…

research product

Strongly decelerated expansion of SN 1979C

We observed SN1979C in M100 on 4 June 1999, about twenty years after explosion, with a very sensitive four-antenna VLBI array at the wavelength of 18cm. The distance to M100 and the expansion velocities are such that the supernova cannot be fully resolved by our Earth-wide array. Model-dependent sizes for the source have been determined and compared with previous results. We conclude that the supernova shock was initially in free expansion for 6 +/- 2 yrs and then experienced a very strong deceleration. The onset of deceleration took place a few years before the abrupt trend change in the integrated radio flux density curves. We estimate the shocked swept-up mass to be about 1.6 solar masse…

research product

23 GHz VLBI observations of SN 2008ax (Research Note)

We report on phase-referenced 23 GHz Very-Long-Baseline-Interferometry (VLBI) observations of the type IIb supernova SN 2008ax, made with the Very Long Baseline Array (VLBA) on 2 April 2008 (33 days after explosion). These observations resulted in a marginal detection of the supernova. The total flux density recovered from our VLBI image is 0.8 ± 0.3 mJy (one standard deviation). As it appears, the structure may be interpreted as either a core-jet or a double source. However, the supernova structure could be somewhat confused with a possible close by noise peak. In such a case, the recovered flux density would decrease to 0.48 ± 0.12 mJy, compatible with the flux densities measured with the…

research product

High-Resolution Radio Imaging of Young Supernovae: SN 1979C, SN 1986J, and SN 2001gd

The high resolution obtained through the use of VLBI gives an unique opportunity to directly observe the interaction of an expanding radio supernova with its surrounding medium. We present here results from our VLBI observations of the young supernovae SN 1979C, SN 1986J, and SN 2001gd.

research product