0000000000054012

AUTHOR

P. Schlindwein

Multisensory vestibular cortex activated by otolith stimulation (fMRI)

research product

Neural correlates of hemispheric dominance and ipsilaterality within the vestibularsystem

Earlier functional imaging studies on the processing of vestibular information mainly focused on cortical activations due to stimulation of the horizontal semicircular canals in right-handers. Two factors were found to determine its processing in the temporo-parietal cortex: a dominance of the non-dominant hemisphere and an ipsilaterality of the neural pathways. In an investigation of the role of these factors in the vestibular otoliths, we used vestibular evoked myogenic potentials (VEMPs) in a fMRI study of monaural saccular-otolith stimulation. Our aim was to (1) analyze the hemispheric dominance for saccular-otolith information in healthy left-handers, (2) determine if there is a predom…

research product

Cortical representation of saccular vestibular stimulation: VEMPs in fMRI

Short tone bursts trigger a vestibular evoked myogenic potential (VEMP), an inhibitory potential which reflects a component of the vestibulocollic reflex (VCR). These potentials arise as a result of activation of the sacculus and are expressed through the vestibulo-collic reflex (VCR). Up to now, the ascending projections of the sacculus are unknown in humans, only the representation of the semicircular canals or the entire vestibular nerve has been demonstrated. The aim of this study was to determine whether a sacculus stimulus that evoked VEMPs could activate vestibular cortical areas in fMRI. To determine this, we studied the differential effects of unilateral VEMP stimulation in 21 heal…

research product

Sympathetic activity at rest and motor brain areas: FDG-PET study.

Although recent studies identified brain areas which are involved in short term activation of the sympathetic nervous system, little is known about brain mechanisms which generate the individual variability of basal autonomic activity. In this fluorodeoxyglucose positron emission tomography study (FDG-PET), we aimed to identify brain regions, which covary with function parameters of the autonomic nervous system at rest. Therefore, FDG-PET (Siemens, Germany) was performed twice in 14 healthy resting subjects (7 m, 7 f; mean age 29.5 years) while different parameters of autonomic function were assessed simultaneously: Blood pressure, heart rate, power spectra of heart rate variability (HF/LF …

research product

Evidence for cortical visual substitution of chronic bilateral vestibular failure (an fMRI study).

Bilateral vestibular failure (BVF) is a rare disorder of the labyrinth or the eighth cranial nerve which has various aetiologies. BVF patients suffer from unsteadiness of gait combined with blurred vision due to oscillopsia. Functional MRI (fMRI) in healthy subjects has shown that stimulation of the visual system induces an activation of the visual cortex and ocular motor areas bilaterally as well as simultaneous deactivations of multisensory vestibular cortex areas. Our question was whether the chronic absence of bilateral vestibular input (BVF) causes a plastic cortical reorganization of the above-described visual-vestibular interaction. We used fMRI to measure the differential effects of…

research product

3.5. Saccular activations in the brainstem and the cerebellum (fMRI)

research product

Functional imaging of sympathetic activation during mental stress

Activation of the sympathetic nervous system (SNS) is essential in adapting to environmental stressors and in maintaining homeostasis. This reaction can also turn into maladaptation, associated with a wide spectrum of stress-related diseases. Up to now, the cortical mechanisms of sympathetic activation in acute mental stress have not been sufficiently characterized. We therefore investigated cerebral activation applying functional magnetic resonance imaging (fMRI) during performance of a mental stress task with graded levels of difficulty, i.e. four versions of a Stroop task (Colour Word Interference Test, CWT) in healthy subjects. To analyze stress-associated sympathetic activation, skin c…

research product

Visual-motion suppression in congenital pendular nystagmus.

Patients with a congenital pendular nystagmus are known not to experience oscillopsia in a normal visual environment. The data of a 31-year-old female patient suffering from a congenital pendular nystagmus are presented. The aim of the fluorodeoxyglucose positron emission tomography (FDG-PET) experiment was to analyze the regional cerebral glucose metabolism (rCGM) during minimal as well as maximal nystagmus. Video-oculography showed a maximum in frequency of the horizontal pendular nystagmus during gaze to the left, whereas the zone of minimal nystagmus was 10 degrees to the right. Two sessions with an 18F-fluorodeoxyglucose tracer were performed to analyze cerebral blood-glucose utilizati…

research product

Metabolic changes in vestibular and visual cortices in acute vestibular neuritis

Five right-handed patients with a right-sided vestibular neuritis were examined twice with fluorodeoxyglucose positron emission tomography while lying supine with eyes closed: once during the acute stage (mean, 6.6 days) and then 3 months later when central vestibular compensation had occurred. Regional cerebral glucose metabolism (rCGM) was significantly increased (p <0.001 uncorrected) during the acute stage in multisensory vestibular cortical and subcortical areas (parietoinsular vestibular cortex in the posterior insula, posterolateral thalamus, anterior cingulate gyrus [Brodmann area 32/24], pontomesencephalic brainstem, hippocampus). Simultaneously, there was a significant rCGM decrea…

research product

3.2. Brain stem and cerebellar activation during optokinetic stimulation

research product

Direction‐dependent visual cortex activation during horizontal optokinetic stimulation (fMRI study)

Looking at a moving pattern induces optokinetic nystagmus (OKN) and activates an assembly of cortical areas in the visual cortex, including lateral occipitotemporal (motion‐sensitive area MT/V5) and adjacent occipitoparietal areas as well as ocular motor areas such as the prefrontal cortex, frontal, supplementary, and parietal eye fields. The aim of this functional MRI (fMRI) study was to investigate (1) whether stimulus direction‐dependent effects can be found, especially in the cortical eye fields, and (2) whether there is a hemispheric dominance of ocular motor areas. In a group of 15 healthy subjects, OKN in rightward and leftward directions was visually elicited and statistically compa…

research product

P13. Compensation processes for central vestibular dysfunction in patients with acute medullary infarctions (FDG-PET study)

research product