0000000000054020
AUTHOR
Alexandros Pitilakis
Characterization of thermo-optical 2×2 switch configurations made of Dielectric Loaded Surface Plasmon Polariton Waveguides for telecom routing architecture
We report on the characterization of thermo-optic switch structures based on Dielectric Loaded Surface Plasmon Polariton Waveguide for high data bit rate transfer. Performances are extracted by Leakage Radiation Microscopy and compared to numerical results.
10 Gb/s transmission and thermo-optic resonance tuning in silicon-plasmonic waveguide platform
The first system-level experimental results of hybrid Si-DLSPP structures incorporated into a SOI chip are reported. We demonstrate over 7nm thermo-optical tuning of a Si-Plasmonic racetrack-resonator and verify error-free 10Gb/s transmission through 60um Si-Plasmonic waveguide.
0.48Tb/s (12x40Gb/s) WDM transmission and high-quality thermo-optic switching in dielectric loaded plasmonics
We demonstrate Wavelength Division Multiplexed (WDM)-enabled transmission of 480Gb/s aggregate data traffic (12x40Gb/s) as well as high-quality 1x2 thermo-optic tuning in Dielectric-Loaded Surface Plasmon Polariton Waveguides (DLSPPWs). The WDM transmission characteristics have been verified through BER measurements by exploiting the heterointegration of a 60 mu m-long straight DLSPPW on a Silicon-on-Insulator waveguide platform, showing error-free performance for six out of the twelve channels. High-quality thermo-optic tuning has been achieved by utilizing Cycloaliphatic-Acrylate-Polymer as an efficient thermo-optic polymer loading employed in a dual-resonator DLSPPW switching structure, …
Data Transmission and Thermo-Optic Tuning Performance of Dielectric-Loaded Plasmonic Structures Hetero-Integrated on a Silicon Chip
We demonstrate experimental evidence of the data capture and the low-energy thermo-optic tuning credentials of dielectric-loaded plasmonic structures integrated on a silicon chip. We show 7-nm thermo-optical tuning of a plasmonic racetrack-resonator with less than 3.3 mW required electrical power and verify error-free 10-Gb/s transmission through a 60-mu m-long dielectric-loaded plasmonic waveguide. We demonstrate experimental evidence of the data capture and the low-energy thermo-optic tuning credentials of dielectric-loaded plasmonic structures integrated on a silicon chip. We show 7-nm thermo-optical tuning of a plasmonic racetrack-resonator with less than 3.3 mW required electrical powe…
Tb/s switching fabrics for optical interconnects using heterointegration of plasmonics and silicon photonics: The FP7 PLATON approach
We present recent work that is carried out within the FP7 project PLATON on novel Tb/s switch fabric architectures and technologies for optical interconnect applications, employing heterointegration of plasmonics, silicon photonics and electronics.