0000000000054020

AUTHOR

Alexandros Pitilakis

Characterization of thermo-optical 2×2 switch configurations made of Dielectric Loaded Surface Plasmon Polariton Waveguides for telecom routing architecture

We report on the characterization of thermo-optic switch structures based on Dielectric Loaded Surface Plasmon Polariton Waveguide for high data bit rate transfer. Performances are extracted by Leakage Radiation Microscopy and compared to numerical results.

research product

10 Gb/s transmission and thermo-optic resonance tuning in silicon-plasmonic waveguide platform

The first system-level experimental results of hybrid Si-DLSPP structures incorporated into a SOI chip are reported. We demonstrate over 7nm thermo-optical tuning of a Si-Plasmonic racetrack-resonator and verify error-free 10Gb/s transmission through 60um Si-Plasmonic waveguide.

research product

0.48Tb/s (12x40Gb/s) WDM transmission and high-quality thermo-optic switching in dielectric loaded plasmonics

We demonstrate Wavelength Division Multiplexed (WDM)-enabled transmission of 480Gb/s aggregate data traffic (12x40Gb/s) as well as high-quality 1x2 thermo-optic tuning in Dielectric-Loaded Surface Plasmon Polariton Waveguides (DLSPPWs). The WDM transmission characteristics have been verified through BER measurements by exploiting the heterointegration of a 60 mu m-long straight DLSPPW on a Silicon-on-Insulator waveguide platform, showing error-free performance for six out of the twelve channels. High-quality thermo-optic tuning has been achieved by utilizing Cycloaliphatic-Acrylate-Polymer as an efficient thermo-optic polymer loading employed in a dual-resonator DLSPPW switching structure, …

research product

Data Transmission and Thermo-Optic Tuning Performance of Dielectric-Loaded Plasmonic Structures Hetero-Integrated on a Silicon Chip

We demonstrate experimental evidence of the data capture and the low-energy thermo-optic tuning credentials of dielectric-loaded plasmonic structures integrated on a silicon chip. We show 7-nm thermo-optical tuning of a plasmonic racetrack-resonator with less than 3.3 mW required electrical power and verify error-free 10-Gb/s transmission through a 60-mu m-long dielectric-loaded plasmonic waveguide. We demonstrate experimental evidence of the data capture and the low-energy thermo-optic tuning credentials of dielectric-loaded plasmonic structures integrated on a silicon chip. We show 7-nm thermo-optical tuning of a plasmonic racetrack-resonator with less than 3.3 mW required electrical powe…

research product

Tb/s switching fabrics for optical interconnects using heterointegration of plasmonics and silicon photonics: The FP7 PLATON approach

We present recent work that is carried out within the FP7 project PLATON on novel Tb/s switch fabric architectures and technologies for optical interconnect applications, employing heterointegration of plasmonics, silicon photonics and electronics.

research product